[1]
M.W. Padberg, G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, Vol. 33(1991), pp.60-100.
DOI: 10.1137/1033004
Google Scholar
[2]
Keld Helsgaun. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic [J]. European Journal of Operational Research, Vol. 126(2000) , pp.106-130.
DOI: 10.1016/s0377-2217(99)00284-2
Google Scholar
[3]
D. Macro, G. L. Maria. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans on Evolutionary Computation, Vol. 1(1997) , pp.53-66.
DOI: 10.1109/4235.585892
Google Scholar
[4]
H.D. Nguyen, I. Yoshihara, K. Yamamori, et al. Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE Trans on SMC, Vol. 37(2007), pp.92-99.
DOI: 10.1109/tsmcb.2006.880136
Google Scholar
[5]
X.Y. Li, P. Tian, J. Hua, et al. A Hybrid Discrete Particle Swarm Optimization for the Traveling Salesman Problem. Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2006, pp.181-188.
DOI: 10.1007/11903697_24
Google Scholar
[6]
X. H Shi, Y.C. Liang and H.P. Lee. Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters, Vol. 103 (2007), pp.169-176.
DOI: 10.1016/j.ipl.2007.03.010
Google Scholar
[7]
Y.W. Chen, Y.Z. Lu. Gene Optimization: Computational Intelligence from the Natures and Micro-mechanisms of Hard Computational Systems. proceedings of International Conference on Life System Modeling and Simulation, LSMS 2007, Shanghai, China.
Google Scholar
[8]
C.H. Jiang. Application of Genetic Algorithms in Logistics System Optimization[D]. East China Normal University, (2007).
Google Scholar