[1]
Huailin Shu, and Youguo Pi, PID neural netwrks for time-delay systems, Computers and Chemical Engineering, vol. 28, 2000, pp.859-862.
DOI: 10.1016/s0098-1354(00)00340-9
Google Scholar
[2]
Zhang Weiguo, and Yang Yanzhong, Fuzzy Control Ttheory and Application, edtied by House of N. P. University Publications (2005), China.
Google Scholar
[3]
J.S. Albus, A new approach to manipulator control: the cerebellar model articulation controller (CMAC) , Trans. ASME J. Dyn. Syst. Meas. Contr, 1975, pp.220-227.
DOI: 10.1115/1.3426922
Google Scholar
[4]
J.S. Albus, Data storage in the cerebellar model articulation controller (CMAC), Trans. ASME J. Dyn. Syst. Meas. Contr, 1975, pp.228-233.
DOI: 10.1115/1.3426923
Google Scholar
[5]
F.G. Harmon, A.A. Frank, and S.S. Joshi, The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network, Neural Networks, vol. 18, 2005, pp.772-780.
DOI: 10.1016/j.neunet.2005.06.030
Google Scholar
[6]
E. Mese, A rotor position estimator for switched reluctance motors using CMAC, Energy Convers Managem, vol. 44, 2003, pp.1229-1245.
DOI: 10.1016/s0196-8904(02)00138-3
Google Scholar
[7]
W.T. Miller, R.P. Hewes, and F.H. Glanz, L.G. Graft, Real-time dynamic control of an industrial manipulator using a neural-networkbased learning controller, IEEE Trans. Robot Autom, 1990, pp.1-6.
DOI: 10.1109/70.88112
Google Scholar
[8]
A. Kolcz, and N.M. Allinson, Application of the CMAC input encoding scheme in the N-tuple approximation network, IEE Proc. Computer Digital Tech, vol. 41, 1994, pp.177-183.
DOI: 10.1049/ip-cdt:19941004
Google Scholar
[9]
F.H. Glanz, W.T. Miller, and L.G. Graft, An overview of the CMAC neural network, Proc. IEEE Neural Networks Ocean Eng, vol. 131, 1991, pp.301-308.
DOI: 10.1109/icnn.1991.163366
Google Scholar
[10]
C.P. Hung, and M.H. Wang, Diagnosis of incipient faults in power transformers using CMAC neural network approach, Electric Power Syst. Res, vol. 71, 2004, pp.235-244.
DOI: 10.1016/j.epsr.2004.01.019
Google Scholar
[11]
S. Wang, and Z. Jiang, Valve fault detection and diagnosis based on CMAC neural networks, Energy Build, vol. 36, 2004, pp.599-610.
DOI: 10.1016/j.enbuild.2004.01.037
Google Scholar
[12]
Kim D. H, Tuning of a PID controller using immune network model and fuzzy set, IEEE International Symposium on Industrial Electronics, 2001, pp.1656-1661.
DOI: 10.1109/isie.2001.931956
Google Scholar
[13]
Takahashi K, and Yamada T, Application of an immune feedback mechanism to control systems, JSME Int J, Series C, vol. 41, 1998, pp.184-191.
DOI: 10.1299/jsmec.41.184
Google Scholar
[14]
WANG Dong-feng, and HAN Pu, Variable arguments PID control for main steam temperature system based on immune genetic optimization, Proceedings of the CSEE, vol. 23, 2003, pp.212-217.
Google Scholar
[15]
J. Wu, and F. Pratt, Self-organizing CMAC neural networks and adaptive dynamic control, Proc. IEEE Int. Symp. on Intell. Contr. / Intell. Systems and Semiotics, Cambridge, MA, 1999, pp.259-265.
DOI: 10.1109/isic.1999.796665
Google Scholar
[16]
Wen Ding-du, Research Combined with for a Kindon a Novel Control Strategy Fuzzy-Dahlin of System with Time-delay, Industrial Instrumentation and Automation, China, vol. 196, 2007, pp.3-5.
Google Scholar