[1]
H. Asada et al., Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures, IEEE Trans. Robot. Autom., vol. 1, no. 2, pp.86-93, (1985).
DOI: 10.1109/jra.1985.1087007
Google Scholar
[2]
M. Y. Wang, An optimal design for 3D fixture synthesis in a point-set domain, IEEE Trans. Robot. Autom., vol. 16, no. 6, pp.839-846, Dec. (2000).
DOI: 10.1109/70.897795
Google Scholar
[3]
M. Y. Wang, Characterizations of positioning accuracy of deterministic localization of fixtures, IEEE Trans. Robot. Autom., vol. 18, no. 6, pp.976-981, (2002).
DOI: 10.1109/tra.2002.805652
Google Scholar
[4]
J. C. Trinkle, On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robot. Autom., vol. 8, no. 5, pp.560-572, Oct. (1992).
DOI: 10.1109/70.163781
Google Scholar
[5]
B. Mishra et al., Grasp metrics: Optimality and complexity , Algorithmic Foundations of Robotics., MA: A. K. Peters, pp.137-166, (1995).
Google Scholar
[6]
B. Mirtich et al., Easily computable optimum grasps in 2-D and 3-D, Proc. IEEE ICRA, pp.739-747, (1994).
Google Scholar
[7]
Y. H. Liu, Qualitative test and force optimization of 3-D frictional formclosure grasps using linear programming, IEEE Trans. Robot. Autom., vol. 15, pp.163-173, Feb. (1999).
DOI: 10.1109/70.744611
Google Scholar
[8]
X. Y. Zhu et al., Optimality Criteria for Fixture Layout Design A Comparative Study, IEEE Trans. Robot. Autom., vol. 6, no. 4, pp.658-669, Sept. (2009).
DOI: 10.1109/tase.2009.2022061
Google Scholar
[9]
Y. L. Xiong et al., Algebraic structure and geometric interpretation of rigid complex fixture systems, IEEE Trans. Robot. Autom., vol. 4, no. 2, pp.252-264, (2007).
DOI: 10.1109/tase.2006.872118
Google Scholar
[10]
W. Cai et al., Deformable sheet metal fixturing: Principles, algorithms, and simulation, ASME J. Manuf. Sci. Eng., vol. 118, pp.318-324, (1996).
Google Scholar
[11]
J. A. Malluck et al., Modeling of deformation of ring shaped workpieces due to chucking and cutting forces, ASME J. Manuf. Sci. Eng., vol. 126, pp.141-147, (2004).
DOI: 10.1115/1.1643079
Google Scholar
[12]
K. L. Johnson in: Contact Mechanics. (Cambridge: Cambridge Univ. Press, U.K., 1985. ).
Google Scholar
[13]
C. H. Xiong et al., On Clamping Planning in Workpiece-Fixture Systems, IEEE Trans. Robot. Autom., vol. 5, no. 3, pp.407-419, (2008).
Google Scholar
[14]
K. Kulankara et al., Iterative fixture layout and clamping force optimization using the Genetic Algorithm, ASME J. Manuf. Sci. Eng., vol. 124, pp.119-125, (2002).
DOI: 10.1115/1.1414127
Google Scholar
[15]
Y. Huang et al., Realizing high accuracy machining by applying optimal clamping forces, IJCA., vol19 (2), pp.107-118, (2004).
Google Scholar
[16]
H. Deng et al., Modeling of fixturing dynamic stability accounting for material removal effect, Trans. NAMRI/SME Eng., vol. 33, pp.289-296, (2005).
Google Scholar
[17]
J. Tripp, Hertian Contact in two and three Dimension, Hertian Contact in two and three Dimension ( Paper NASA Tech. 2473, July 1985. ).
Google Scholar
[18]
M. Y. Wang, Tolerance analysis for fixture layout design, Emerald Trans. J. Assembly. Autom., vol. 22, no. 2, pp.153-162, Dec. (2002).
Google Scholar