[1]
Y.L. Cheng, J.W. Zhang, The existence of the global weak solution for a nonlinear thermoelastic beam , Journal of Taiyuan university of technology, 2007, 38, pp.301-302.
Google Scholar
[2]
B.A. Bolley and J.H. Weiner, Theory of Thermal Stress. Wiley, New York, (1960).
Google Scholar
[3]
G. Duvaut, Free boundary problems connected with thermoelasticity and unilateral contact, Free Boundary Problems, Roma, 1980, 2, pp.875-898.
Google Scholar
[4]
P. Shi, Shillor M & Zou X, Numerical solutions to one dimensional problems of thermoelastic contact . Comput. Math. Appl. Math. 1991, 22, pp.65-78.
DOI: 10.1016/0898-1221(91)90193-8
Google Scholar
[5]
P. Shi & M. Shillor, A quasistatic contact problem in thermoelasticity with a radiation condition for the temperature, J . Math. Anal. Appl., 1993, 172, pp.147-165.
DOI: 10.1006/jmaa.1993.1013
Google Scholar
[6]
L F Fatori & J Z Munoz Rivera, Energy decay for hyperbolic thermoelastic systems of memory type, Quart. Appl. Math. 2001, 59, pp.441-458.
DOI: 10.1090/qam/1848527
Google Scholar
[7]
L.F. Fatori & E. Lueders J E, Munoz Rivera, Transmission problem for hyperbolic thermoelastic systems, J. Therm. Stresses, 2003, 26, pp.739-763.
DOI: 10.1080/713855994
Google Scholar
[8]
H.J. Gao & J. E. Munoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Diff. Eqs., 2002, 186, pp.52-68.
DOI: 10.1016/s0022-0396(02)00016-5
Google Scholar