Solving Obstacle Problem Based on Potential-Reduction Interior Point Algorithm

Article Preview

Abstract:

This text studies a kind of obstacle problem. Combining with difference principle, we transform the original problem into monotone linear complementarity problem, and propose a novel method called potential-reduction interior point algorithm for monotone linear complementarity problem. We establish global and finite convergence of the new method. The reliability and efficiency of the algorithm is demonstrated by the numerical experiments of standard linear complementarity problems and the examples of obstacle problem with free boundary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

725-731

Citation:

Online since:

August 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C Billups and K.G. Murty: Complementarity Problems, Journal of Computational and Applied Mathematics. Vol. 124 (2000), pp.303-318.

DOI: 10.1016/s0377-0427(00)00432-5

Google Scholar

[2] R.W. Cottle, J. S Pang, and R E Stone: The Linear Complementarity Problems, Academic Press (1992).

Google Scholar

[3] Karmarkar. N. A new polynomial-time Algorithm for linear programming, Combinatorica. Vol. 4 (1984), pp.373-395.

DOI: 10.1007/bf02579150

Google Scholar

[4] M. Kojima, N. Megiddo, T. Noma, A. Yoshise: A Primal-dual Interior Point Algorithm for Linear Programming, in: N. Megiddo (Ed. ), Progress in Mathematical Programming; Interior Point Related Methods, Springer Verlag, New York (1989), pp.29-47.

DOI: 10.1007/978-1-4613-9617-8_2

Google Scholar

[5] N. Megiddo: Pathways to the optimal set in linear programming, in: N. Megiddo (Ed. ), Progress in Mathematical Programming; Interior Point and Related Methods, Springer Verlag, New York (1989), pp.158-313.

DOI: 10.1007/978-1-4613-9617-8_8

Google Scholar

[6] M. Kojima, S. Mizuno, A. Yoshise: A Polynomial-time Algorithm for a Class of Linear Complementarity Problems, Math. Prog. Vol. 44 (1989), pp.1-26.

DOI: 10.1007/bf01587074

Google Scholar

[7] M. Kojima, N. Megiddo, S. Mizuno: A Primal-dual Infeasible Interior Point Algorithm for Linear Programming, Math. Prog. Vol. 61 (1993), pp.261-280.

DOI: 10.1007/bf01582151

Google Scholar

[8] Y. Zhang: On the Convergence of a Class of Infeasible-Interior-Point Methods for the Horizontal Linear Complementarity Problem, SIMA J. Optim. Vol. 4 (1994), pp.208-227.

DOI: 10.1137/0804012

Google Scholar

[9] S.J. Wright: An Infeasible-Interior-Point Algorithm for Linear Complementarily Problems, Math. Prog. Vol. 67 (1994), pp.29-52.

Google Scholar

[10] J V Burke, and S Xu: The Global Linear Convergence of a Non-Interior Path Following Algorithm for Linear Complementarity Problems, Mathematics of Operations Research. Vol. 23 (1998), pp.719-734.

DOI: 10.1287/moor.23.3.719

Google Scholar

[11] C. Geiger, and C. Kanzow: On the Resolution of Monotone Complementarily Problems, Comput. Optim. Appl. Vol. 15 (1996), pp.5-173.

Google Scholar