[1]
S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma, Latest trends in millimeter-wave imaging technology, , Progress In Electromagnetics Research Letters, Vol. 1, 197-204, (2008).
DOI: 10.2528/pierl07120604
Google Scholar
[2]
S. Yeom, D. Lee, J. Son, and V. P. Guschin, Distance estimation of concealed objects with stereoscopic passive millimetre-wave imaging, Progress In Electromagnetics Research Vol. 115, 399-407, (2011).
DOI: 10.2528/pier11030307
Google Scholar
[3]
B. Zhang, Y. Fan, Z. Chen, X. F. Yang and F. Q. Zhong, An Improved 110-130-GHz Fix-Tuned Subharmonic Mixer with Compact Microstrip Resonant Cell Struture., Journal of Electromagnetic Waves and Applications, Vol. 25, 411-420, (2011).
DOI: 10.1163/156939311794362830
Google Scholar
[4]
M. Z. Zhan., W. Zhao, and R. M. Xu, Design of millimetre-wave wideband mixer with a novel IF bloc, Progress In Electromagnetics Research C, Vol. 30, 41-52, (2012).
DOI: 10.2528/pierc12041618
Google Scholar
[5]
W. Dou, H. Meng, B. Nie, Z. Wang, and F. Yang, Scanning antenna at THz band based on Quasi-optical Techniques, Progress In Electromagnetics Research Vol. 108, 343-359, (2010).
DOI: 10.2528/pier10062810
Google Scholar
[6]
H. Liu, Z. Lou, H. Wang, J. Miao, Precise Design of Millimeter wave quasi-optical Faraday Rotators, Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, No. 4, 401-409, (2009).
DOI: 10.1007/s10762-008-9458-2
Google Scholar
[7]
M. Cai and E. P. Li, A novel Terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure, Progress In Electromagnetics Research, Vol. 97, 61-73, (2009).
DOI: 10.2528/pier09090902
Google Scholar
[8]
X. Q. Lin, , T. J. Cui, Y. Fan, and X. Liu, Frequency selective surface designed using electric resonant structures in Terahertz frequency bands, Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 21-99, (2009).
DOI: 10.1163/156939309787604724
Google Scholar
[9]
C. F. Hsieh, Y. C. Lai, R. P. Pan, C. L. Pan, Polarizing terahertz waves with nematic liquid crystals, Opt. Letters, Vol. 33, 1174, (2008).
DOI: 10.1364/ol.33.001174
Google Scholar
[10]
I. Yamada, K. Takano, M. Hangyo, M. Saito and W. Watanabe, Terahertz wire-grid polarizers with micrometer-pitch Al gratings, Opt. Letters , Vol. 34, No. 3, (2009).
DOI: 10.1364/ol.34.000274
Google Scholar
[11]
D. Tian, H. Zhang, W. Lai, Q. Wen, Y. Song, Z. Wang, Double Wire-grid Terahertz Polarizer on Low-loss Polymer Substrates, CHIN. PHYS. LETT, Vol. 27, No. 10, (2010).
Google Scholar
[12]
Information on http: /www. mtinstruments. com/downloads/Polarizer%20Datasheet. pdf.
Google Scholar
[13]
J. B. Sapiro and E. E. Bloemhof, Fabrication of Wire-grid Polarizers and Dependence of Submillimeter-wave Optical Performance of Pitch Uniformity, International Journal of Infrared and Millimeter Waves, Vol. 11, No. 8, (1990).
DOI: 10.1007/bf01008639
Google Scholar
[14]
G. M. Smith, A. Harvey, W. Webb, M. Leeson, J. C. G. Lesurf, Quasi-optical techniques for MM-wave heterodyne systems, Oct. 2, (1992).
Google Scholar
[15]
Information on http: /www. abmillimetre. com/Introduction. htm.
Google Scholar