Analysis of Optimal Configuration of Building Integrated Photovoltaic (BIPV) Array under Moving Partial Shade

Article Preview

Abstract:

Influenced by partial shade, there are power losses induced by irradiation reduction, photovoltaic (PV) modules mismatch and maximum power point tracking (MPPT) failure. In order to raise power generation efficiency of building integrated PV (BIPV) power station, typical series-parallel PV array controlled with centralized MPPT is taken into consideration. Simulation model is constructed to describe the output characteristic of PV array under complex partial shade conditions. Due to bypass/blocking diodes, there are multiple peaks on P-V characteristic curve under partial shade. Potential power losses under partial shade are analyzed and divided into three parts respectively. Simulation results demonstrate that there are considerable power losses induced by PV module mismatch under determined tangible partial shade lasting for long time. Optimal configuration of BIPV array are brought forward to minimize PV module mismatch power loss for moving shade conditions, and it is also suitable to large desert or hillside PV power stations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-204

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. V. Dhople, A. Davoudi, A. D. Dominguez Garcia, P. L. Chapman, A unified approach to reliability assessment of multiphase DC–DC converters in photovoltaic energy conversion systems, IEEE Trans. Power Electron. 27 (2012) 739–751.

DOI: 10.1109/tpel.2010.2103329

Google Scholar

[2] A. Maki, S. Valkealahti, Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions, IEEE Trans. Energy Convers. 27 (2012) 173-183.

DOI: 10.1109/tec.2011.2175928

Google Scholar

[3] Y. J. Wang, P. C. Hsu, Analytical modelling of partial shading and different orientation of photovoltaic modules, IET Renewable Power Generat. 4 (2010) 272-282.

DOI: 10.1049/iet-rpg.2009.0157

Google Scholar

[4] H. Patel, V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions, IEEE Trans. Ind. Electron. 55 (2008) 1689-1698.

DOI: 10.1109/tie.2008.917118

Google Scholar

[5] M. Miyatake, M. Veerachary, F. Toriumi, Maximum power point tracking of multiple photovoltaic arrays: a PSO approach, IEEE Trans. on Aero. and Elec. Sys. 47 (2011) 367-380.

DOI: 10.1109/taes.2011.5705681

Google Scholar

[6] C. S. Chin, P. n Neelakantan, H. P. Yoong, S. S. Yang, K. T. K. Teo, Maximum power point tracking for PV array under partially shaded conditions, Int. Conf. Comput. Intelli. Commun. Sys. and Net. (2011) 72-77.

DOI: 10.1109/cicsyn.2011.27

Google Scholar

[7] A. K. Rai, N.D. Kaushika, B. Singh, N. Agarwal, Simulation model of ANN based maximum power point tracking controller for solar PV system, Solar Energy Mater. Solar Cells 95 (2011) 773-778.

DOI: 10.1016/j.solmat.2010.10.022

Google Scholar

[8] G. R. Walker, P. C. Sernia, Cascaded DC–DC converter connection of photovoltaic modules, IEEE Trans. Power Electron. 19 (2004) 1130-1139.

DOI: 10.1109/tpel.2004.830090

Google Scholar

[9] R. Carbone, A. Tomaselli, Recent advances on AC PV-modules for grid-connected photovoltaic plants, Proc. Int. Conf. Clean Electr. Power (2011) 124-129.

DOI: 10.1109/iccep.2011.6036365

Google Scholar

[10] S. Busquets-Monge, J. Rocabert, P. Rodriguez, S. Alepuz, J. Bordonau, Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array, IEEE Trans. Ind. Electron. 55 (2008) 2713-2723.

DOI: 10.1109/tie.2008.924011

Google Scholar

[11] E. Karatepe, T. Hiyama, M. Boztepe, M. C¸ olak, Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions, Energy Convers. Manag. 49 (2008) 2307-2316.

DOI: 10.1016/j.enconman.2008.01.012

Google Scholar

[12] S. V. Dhople, J. L. Ehlmann, A. Davoudi, P. L. Chapman, Multipleinput boost converter to minimize power losses due to partial shading in photovoltaic modules, Proc. Energy Convers. Congr. Expo. (2010) 2633-2636.

DOI: 10.1109/ecce.2010.5618013

Google Scholar

[13] Z. Qi, S. Xiangdong, Z. Yanru, M. Mikihiko, A novel topology for solving the partial shading problem in photovoltaic power generation system, Proc. Power Electron. Motion Control Conf. (2009) 2130-2135.

DOI: 10.1109/ipemc.2009.5157752

Google Scholar

[14] D. Picault, B. Raison, S. Bacha, J. Aguilera, J. De La Casa, Changing photovoltaic array interconnections to reduce mismatch losses: A case study, Proc. 9th Int. Conf. Environ. Electr. Eng. (2010) 37-40.

DOI: 10.1109/eeeic.2010.5490027

Google Scholar

[15] L. F. L. Villa, D. Picault, B. Raison, S. Bacha, A. Labonne, Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules, IEEE Journal of Photovoltaics, 2 (2012) 154-163.

DOI: 10.1109/jphotov.2012.2185040

Google Scholar