Optimization of Culture Conditions for Biosynthesis of Lipopeptide by Bacillus Subtilis with Starch

Article Preview

Abstract:

Optimization of culture conditions for lipopeptide production of lipopeptide by Bacillus subtilis NEL-01 was carried out in shaker flask batch fermentations using composite central design of response surface methodology (RSM). A five-level three-factor central composite design was employed to determine the maximum lipopeptide production at optimum levels for culture temperature, initial pH and culture cycle. Culture temperature and culture cycle showed the significant linear main effects, while pH had no significant linear effect. The production was also significantly affected by quadratic effect of culture temperature and initial pH. Optimum fermentation parameters were predicted at temperature, initial pH, and culture cycle of 34.81 °C, 7.33g/l, 49.26 h, respectively. The prediction lipopeptide yield was 1879.56 mg/l. The subsequent experiments confirmed the prediction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-229

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Kuiper, E.L. Lagendijk, R. Pickford, J. P. Derrick, G.E. Lamers, J.E. Thomas-Oates, B.J. Lugtenberg and G.V. Bloemberg,: Mol. Microbiol. vol. 51 (2004), p.97.

Google Scholar

[2] S. Thennarasua, D.K. Leea, A. Tana, U.P. Karib and A. Ramamoorthy: Biochimica et. Biophysica. Acta. vol. 1711(2005), p.49.

Google Scholar

[3] A. Koglin, F. Lohr, F. Bernhard, V.V. Rogov, D.P. Frueh, E.R. Strieter, M.R. Mofid, P. Guntert, G. Wagner, C.T. Walsh, M.A. Marahiel and V. Dotsch: Nature. Vol. 454(2008), p.907.

DOI: 10.2210/pdb2k2q/pdb

Google Scholar

[4] J.M. Solomon, R. Magnuson, A. Srivastava and A.D. Grossman: Genes. & Development. Vol. 9(1995), p.547.

Google Scholar

[5] L.P. Tran, T. Nagal and Y. Itoh: Mol. Microbiol. vol. 37 (2000), p.1159.

Google Scholar

[6] S. Horowitz, J.N. Gilbert and W.M. Griffin: J. Ind. Microbiol. vol. 6(1990), p.243.

Google Scholar

[7] F. Peypoux, F. Besson, G. Michel, C. Lenzen, L. Dierickx and L. Delcambe: J. Antibiot (Tokyo). Vol. 33(1980), p.1146.

DOI: 10.7164/antibiotics.33.1146

Google Scholar

[8] M.J. Rybak, E. Hershberger, T. Moldovan and R.G. Grucz: Antimicrob. Agents. Chemother. Vol. 44 (2000), p.1062.

Google Scholar

[9] N. Vanittanakom, and W Loeffler: J. Antibiot (Tokyo). Vol. 39 (1986), p.888.

Google Scholar

[10] H. Heerklotz and J Seelig: Eur. Biophys. J. Vol. 36(2007), p.305.

Google Scholar

[11] L. M Whang, P.W.G. Liu, C.C. Ma and S.S. Cheng: J. Hazard. Mater. Vol. 151(2008), p.155.

Google Scholar

[12] A. Etchegaray, C. de Castro Bueno, I.S. S.M. de Melo, Tsai, F.M. de Fatima, M.E. Silva-Stenico, L.A. de Moraes and O. Teschke: Arch. Microbiol. Vol. 190(2008), p.611.

DOI: 10.1007/s00203-008-0409-z

Google Scholar

[13] V. Poorna and P.R. Kulkarni: Bioresour. Technol. Vol. 54(1995), p.315.

Google Scholar

[14] D.A. Davis, H.C. Lynch and J. Varley: Enzyme. Microb. Technol. Vol. 28(2001), p.346.

Google Scholar

[15] J. Thaniyavarn, N. Roongsawang, T. Kameyama, M. Haruki, T. Imanaka, M. Morikawa and S. Kanaya: Biosci. Biotechnol. Biochem. Vol. 67(2003), p.1239.

DOI: 10.1271/bbb.67.1239

Google Scholar

[16] R. Thavasi, V.R.M.S. Nambaru, S. Jayalakshmi, T. Balasubramanian and I.M. Banat: Mar. Biotechnol. Vol. 11(2009), p.551.

DOI: 10.1007/s10126-008-9162-1

Google Scholar

[17] J. Glazyrina, S. Junne, P. Thiesen, K. Lunkenheimer and P. Goetz: Appl. Microbiol. Biotechnol. Vol. 81 (2008), p.23.

DOI: 10.1007/s00253-008-1620-1

Google Scholar