[1]
SMITH, Charles. Composite Structure[P]. Britain patent: PCT/GB98 /01377(1997).
Google Scholar
[2]
LUO Zhong. Study on the Absorption Theory and Structure Design for New Underwater Acoustic Stealth Sandwich Composite[D]. Naval University of Engineering, in press, (2010).
Google Scholar
[3]
LUO Zhong, ZHU Xi, MEI Zhi-yuan. Structure design and experiment research on underwater micro-perforated absorbers[J]. ACTA, vol. 35 329-334(2010).
Google Scholar
[4]
Faverjon B, Soize C. Equivalent acoustic impedance matrix methods for ultrasonic wave propagation in piezoelectric multilayers[J]. Journal of Sound and Vibration, vol. 276(3-5): 593-613. (2004).
DOI: 10.1016/j.jsv.2003.08.054
Google Scholar
[5]
Collet B. Recursive surface impedance matrix methods for ultrasonic wave propagation in piezolelctric multilayers[J]. Ultrasonics, vol. 42(1-9): 189-197. (2004).
DOI: 10.1016/j.ultras.2004.01.008
Google Scholar
[6]
Tadeusz Gufra, Krzysztof Opielinski J. Influence of acoustic impedance of multilayer acoustic systems on the transfer function of ultrasonic airborne transducers[J]. Ultrasonics, vol. 40(1): 457-463. ( 2002).
DOI: 10.1016/s0041-624x(02)00159-2
Google Scholar
[7]
Langlet P, Hennion A C, Decarpigny J N. Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method[J]. Journal of Acoustic Society of America, vol. 98(5): 2792-2800. (1998).
DOI: 10.1121/1.413244
Google Scholar
[8]
Pedersen P C, Tretiak O, Ping He. Impedance-matching properties of an inhomogeneous matching layer with continyously changing acoustic impedance[J]. Journal of Acoustical Society of American, 72(2): 327-336. (1982).
DOI: 10.1121/1.388085
Google Scholar
[9]
Gaunaurd G C. Comments on asorption mechanisms for waterborene sound in Alberich anechoic layers[J]. Ultrasonic, vol. 23(1): 90-91. ( 1985).
DOI: 10.1016/0041-624x(85)90038-1
Google Scholar
[10]
Achenbach J D, Kitahara M. Harmonic waves in a solid with a periodic distribution of spherical cavities[J]. Journal of Acoustical Society of American, 81(3): 595-598. (1987).
DOI: 10.1121/1.394825
Google Scholar
[11]
WANG Man. The theory and experiment research of anechoic rubber. Haerbin: university of haerbin, in press. (2004).
Google Scholar
[12]
TAN Hong-bo, ZHAO hong, XU Hai-ting. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. ACTA ACUSTICA, vol. 28(3): 277-282. ( 2003).
Google Scholar
[13]
HE Shi-ping, TANG Wei-lin, HE Lin. Analysis of acoustic characteristics of anechoic coating containing varying sectional cylindrical cavity. Journal of ship mechanics, vol. 28(3): 277-282. ( 2003).
Google Scholar
[14]
Hennion A C, Decarpigny J N. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: application to Alberich anechoic coatings[J]. Journal of Acoustic Society of America, vol. 90(6): 3356-3367. ( 1991).
DOI: 10.1121/1.401395
Google Scholar