Co/ZrO2-Al2O3 Catalysts with Bimodal Pore Distribution for Fischer-Tropsch Synthesis

Article Preview

Abstract:

The Co/ZrO2-Al2O3 catalysts were prepared by impregnation method, and characterized via quantitative XRD, H2-TPR, and N2 adsorption-desorption techniques. The study showed that the addition of ZrO2 increased the interaction between active component and support, decreased the average crystallite size of Co3O4 and improved its dispersion. The performance tests presented that the Co/ZrO2-Al2O3 catalysts with bimodal pore distribution had high CO conversion and were more selective towards the gasoline fraction (C5-C10) and diesel fraction (C11-C18).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2586-2593

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 1692–1744.

Google Scholar

[2] C. Knottenbelt, Catal. Today 71 (2002) 437–445.

Google Scholar

[3] H.J. Zhang, H.F. Ma, H.T. Zhang, W.Y. Ying, D.Y. Fang, Catal. Lett. 142 (2012) 131–137.

Google Scholar

[4] E. Lira, C.M. López, F. Oropeza, M. Bartolini, J. Alvarez, M. Goldwasser, F.L. Linares, J.F. Lamonier, M.J.P. Zurita, J. Mol. Catal. A: Chem. 281 (2008) 146–153.

DOI: 10.1016/j.molcata.2007.11.014

Google Scholar

[5] A. Martínez, C. López, F. Márquez, I. Díaz, J. Catal. 220 (2003) 486–499.

Google Scholar

[6] H.P. Withers, K.F. Eliezer, J.W. Mitchell, Ind. Eng. Chem. Res. 29 (1990) 1807–1814.

Google Scholar

[7] C.C. Ma, N. Yao, Q. Han, X.N. Li, Chem. Eng. J. 191 (2012) 534–540.

Google Scholar

[8] Y. Yao, X. Liu, D. Hildebrandt, D. Glasser, Chem. Eng. J. 193–194 (2012) 318–327.

Google Scholar

[9] J.M. Dominguez, J.L. Hernandez, G. Sandoval, Appl. Catal. A: Gen. 197 (2000) 119–130.

Google Scholar

[10] T. Klimova, M.L. Rojas, P. Castillo, R. Cuevas, J. Ramirez, Micropor. Mesopor. Mat. 20 (1998) 293–306.

Google Scholar

[11] H.F. Xiong, Y.H. Zhang, K.Y. Liew, J.L. Li, J. Mol. Catal. A: Chem. 231 (2005) 145–151.

Google Scholar

[12] S. Ali, B. Chen, J.G. Goodwin, J. Catal. 157 (1995) 35–41.

Google Scholar

[13] G. Jacobs, T.K. Das, Y.Q. Zhang, J.L. Li, G. Racoillet, B.H. Davis, Appl. Catal. A: Gen. 233 (2002) 263–281.

Google Scholar

[14] Y.C. Liu, K.G. Fang, J.G. Chen, Y.H. Sun, Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts, Green Chem. 9 (2007) 611–615.

DOI: 10.1039/b614266d

Google Scholar

[15] A.M. Saib, M. Claeys, E.V. Steen, Catal. Today 71 (2002) 395–402.

Google Scholar

[16] M.G. Sanchez, J.L. Gazquez, J. Catal. 104 (1987) 120–135.

Google Scholar

[17] F. Rohr, O.A. Lindvåg, A. Holmen, E.A. Blekkan, Catal. Today 58 (2000) 247–254.

DOI: 10.1016/s0920-5861(00)00258-3

Google Scholar

[18] G. Jacobs, K. Chaudhari, D. Sparks, Y.Q. Zhang, B.C. Shi, R. Spicer, T.K. Das, J.L. Li, B.H. Davis, Fuel 82 (2003) 1251–1260.

DOI: 10.1016/s0016-2361(03)00015-2

Google Scholar

[19] E. Iglesia, Appl. Catal. A: Gen. 161 (1997) 59–78.

Google Scholar

[20] R. Bechara, D Balloy, D Vanhove, Appl. Catal. A: Gen. 207 (2001) 343–353.

Google Scholar