QSAR Analyzes for the Predictive Toxicity of Substituted Phenols and Anilines to Fish (carp)

Article Preview

Abstract:

A quantitative structure-activity relationship (QSAR) study for predicting the acute toxicity 96h - LC50 values of substituted anilines and phenols to carp is presented in this work. For this, the descriptors were obtained with DFT method at the B3LYP/6-311G** level using the Gaussian 03 software package. Afterwards the obtained parameters were taken as theoretical descriptors to establish a QSAR model for predicting -lgLC50. The model contains two variables, energy of the highest occupied molecular orbital (EHOMO) and energy of the lowest unoccupied molecular orbital (ELUMO), which suggest that the main effect on biological toxicity of phenols and anilines is the interaction of electrons between the molecules of organic chemicals. Besides, the model was further validated by variance inflation factors (VIF) and t-test, and show fine stabilities and predictive abilities, which can be used to predict -lgLC50 of these kinds of compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-112

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Rubio, E. Lissi, N. Herrera, V. Pérez and N. Fuentes: Chemosphere. Vol. 86 (2012), p.1035.

Google Scholar

[2] H. Liu, J. Tan, H.X. Yu, H.X. Liu, L.S. Wang and Z.Y. Wang: Int. J. Environ. Res. Vol. 4 (2010), p.507.

Google Scholar

[3] X. X. Liu, J.Y. Li, J.X. Yu, S.Q. Sun, Y.J. Wang and H.X. Liu: Bull. Environ. Contam. Toxicol. Vol. 89 (2012), p.950.

Google Scholar

[4] L.Y. Mo, S.S. Liu, Y.N. Zhu, H.L. Liu, H.Y. Liu and Z.S. Yi: Bull. Environ. Contam. Toxicol. Vol. 87 (2011), p.473.

Google Scholar

[5] X. J. You, H. Liu, G. Y. Yang and Z.Y. Wang: Chinese J. Struct. Chem. Vol. 28 (2009), p.1311.

Google Scholar

[6] X.L. Li, Z.Y. Wang, H.L. Liu and H.X. Yu: Bull. Environ. Contam. Toxicol. Vol. 89 (2012), p.27.

Google Scholar

[7] V. Aruoja, M. Sihtmäe, H-C. Dubourguier and A. Kahru: Chemosphere. Vol. 84 (2011), p.1310.

Google Scholar

[8] D. X. Jiang, Y. Li, J. Li and G. X. Wang: Int. J. Environ. Res. Vol. 5 (2011), p.923.

Google Scholar

[9] P. R. Duchowicz, A. G. Mercader, F. M. Fernández and E. A. Castro: Chemom. Intell. Lab. Syst. Vol. 90 (2008), p.97.

Google Scholar

[10] R. Kunal and P. L. A. Popelier: Bioorg. Med. Chem. Lett. Vol. 18 (2008), p.2604.

Google Scholar

[11] Z.G. Ge, P. Sun, H. Liu, J. Tan and H.X. Liu: Chinese J. Struct. Chem. Vol. 30 (2011), p.630.

Google Scholar

[12] H.M. Zhao, C.Y. Zhang, Z.G. Ge and Z.Y. Wang: Chinese J. Struct. Chem. Vol. 29 (2010), p.1467.

Google Scholar

[13] S.T. Cao, X. Wang, H.X. Liu, G.Y. Yang and Z.Y. Wang: Chinese J. Struct. Chem. Vol. 29 (2010), p.1007.

Google Scholar

[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03, Revision E. 01. Gaussian, Inc., Wallingford CT, (2004).

Google Scholar

[15] X. Yuan, X.F. Yuan and Y.H. Zhao: J. Northeast Normal Univ. Vol. 33 (2001), p.70 (in Chinese).

Google Scholar