[1]
Watson K, Rowen L C, Offield T W. Application of thermal modeling in the geologic interpretation of IR images, Remote Sens Environ. 3 (1971) 2017-(2041).
Google Scholar
[2]
John C. Price, Thermal inertia mapping:A new view of the earth, Journal of Geophysical Research. 87 (1982) 2582-2590.
Google Scholar
[3]
ratt A, Ellyett C D. The thermal inertia approach to mapping of soil moisture and geology, Remote SensEnviron. 8 (1979) 151-168.
DOI: 10.1016/0034-4257(79)90014-2
Google Scholar
[4]
John C. Price, On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia, Remote Sensing of Environment. 18 (1985) 59-73.
DOI: 10.1016/0034-4257(85)90038-0
Google Scholar
[5]
SOBRINO, J.A., and KHARRAZ, M.H. El., Combining afternoon and morning NOAA satellites for thermal inertia estimation 2, Methodology and application, Journal of Geophysical Research. D8 (1999) 9455-9465.
DOI: 10.1029/1998jd200108
Google Scholar
[6]
Sun, X., Zhu, Z., Tang, X., Su, H., Zhang, R., A new method to measure soil thermal inertia. Science in China, Ser. E, 30(suppl)(2000) 71-76.
Google Scholar
[7]
Mellon, M. T., B. Jakosky, H. Kieffer, P., Christensen, High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 148(2000) 437-455.
DOI: 10.1006/icar.2000.6503
Google Scholar
[8]
MAJUMDAR, T.J., Regional thermal inertia mapping over the Indian subcontinent using INSAT-1D VHRR data and its possible geological applications, International Journal of Remote Sensing. 24 (2003) 2207-2220.
DOI: 10.1080/01431160210161724
Google Scholar
[9]
CLAPS, P. and LAGUARDIA, G., Assessing spatial variability of soil water content through thermal inertia and NDVI, Remote Sensing for Agriculture, Ecosystems, and Hydrology. 5232 (2004) 378-387.
DOI: 10.1117/12.510984
Google Scholar
[10]
MITRA, D.S. and MAJUMDAR, T.J., Thermal inertia mapping over the Brahmaputra basin, India using NOAA-AVHRR data and its possible geological applications, International Journal of Remote Sensing. 16(2004) 3245-3260.
DOI: 10.1080/01431160310001632701
Google Scholar
[11]
Xue, Y. ,Cracknell A P., Advanced thermal inertia modeling, INT.J. Remote Sensing. 16 (1995) 341-446.
Google Scholar
[12]
Xue, Y., Thermal inertia and soil moisture mapping, MSC thesis, Peking University (in Chinese). ( 1986).
Google Scholar
[13]
Zhang, R., Sun, X., Zhu, Z., Su, H., and Tang X., A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation, Science in China. 46 (2003) 539-545.
Google Scholar
[14]
Cai, G., Xue, Y., Hu, Y., Wang, Y., Guo, J., Luo, Y., Wu, C., Zhong, S. and Qi, S., Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model, International Journal of Remote Sensing. 28 (2007) 3567–3581.
DOI: 10.1080/01431160601034886
Google Scholar
[15]
Liu, Z. and Zhao, Y., Research on the Method for Retrieving Soil Moisture using Thermal Inertia Model, Science in China. 49 (2006) 539-545.
DOI: 10.1007/s11430-006-0539-6
Google Scholar
[16]
Liu, Z.H., Zhao, Y.S., & Song, X.N. A simplified surface albedo inverse model with MODIS data, Remote sensing technology and application(in Chinese). 19 (2004) 508-511.
DOI: 10.1109/igarss.2004.1370116
Google Scholar
[17]
Liu, Z. and Zhao, Y., Retrieval of plant and soil component temperature under different light conditions based on genetic algorithm(in Chinese), Transactions of the CASE. 28(2012) 161-166.
Google Scholar
[18]
Norman, J. M., W. P. Kustas, and K. S. Humes., Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agricultural and Forest Meteorology. 77 (1995) 263-293.
DOI: 10.1016/0168-1923(95)02265-y
Google Scholar
[19]
CLAPS, P., and LAGUARDIA, G., Assessing spatial variability of soil water content through thermal inertia and NDVI, Remote Sensing for Agriculture, Ecosystems, and Hydrology. 5232 (2004) 378-387.
DOI: 10.1117/12.510984
Google Scholar