[1]
Bond, T., et al., Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. WATER RESEARCH, 2011. 45(15): pp.4341-4354.
DOI: 10.1016/j.watres.2011.05.034
Google Scholar
[2]
Plewa, M.J., et al., Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008. 42(3): pp.955-961.
DOI: 10.1021/es071754h
Google Scholar
[3]
Plewa, M.J., et al., Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008. 42(3): pp.955-961.
DOI: 10.1021/es071754h
Google Scholar
[4]
Muellner, M.G., et al., Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic? ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007. 41(2): pp.645-651.
DOI: 10.1021/es0617441.s001
Google Scholar
[5]
Xie, Y.F., D.A. Reckhow and D.C. Springborg, Analyzing HAAs and ketoacids without diazomethane. JOURNAL AMERICAN WATER WORKS ASSOCIATION, 1998. 90(4): pp.131-138.
DOI: 10.1002/j.1551-8833.1998.tb08416.x
Google Scholar
[6]
Liu, W. and S. Qi, Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2010. 4(1): pp.65-72.
DOI: 10.1007/s11783-010-0010-y
Google Scholar
[7]
Peretyazhko, T. and G. Sposito, Reducing capacity of terrestrial humic acids. GEODERMA, 2006. 137(1-2): pp.140-146.
DOI: 10.1016/j.geoderma.2006.08.004
Google Scholar
[8]
Brown, D., J. Bridgeman and J.R. West, Predicting chlorine decay and THM formation in water supply systems. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2011. 10(1): pp.79-99.
DOI: 10.1007/s11157-011-9229-8
Google Scholar
[9]
Fooladvand, M., et al., Investigation of trihalomethanes formation potential in Karoon River water, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2011. 178(1-4): pp.63-71.
DOI: 10.1007/s10661-010-1672-4
Google Scholar
[10]
Shah, A.D. and W.A. Mitch, Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012. 46(1): pp.119-131.
DOI: 10.1021/es203312s
Google Scholar
[11]
Krasner, S.W., et al., Occurrence of a new generation of disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006. 40(23): pp.7175-7185.
Google Scholar
[12]
Richardson, S.D., Disinfection by-products and other emerging contaminants in drinking water. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2003. 22(10): pp.666-684.
DOI: 10.1016/s0165-9936(03)01003-3
Google Scholar