Occurrence of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Aquatic Systems from Asia

Article Preview

Abstract:

Perfluorinated compounds (PFCs) are man-made fluorinated hydrocarbons, which are very persistent in the environment. Being the most important PFC, perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have received much attention. According to the large production volume and wide usage in industrial and commercial products in the past, PFOS and PFOA can be detected in various environmental media and matrix, even in human tissues. This paper attempts to review the current status of PFOS and PFOA contaminations in Asia, focusing on a variety of water systems, including surface waters, drinking water, coastal water and sea water. The current information suggests that PFOS and PFOA were replacement compounds identified, although PFC species detected were not completely the same in different water systems. The information also suggests that drinking water might be an important source of exposure to PFOS and PFOA, and continued human exposure to even relatively low concentrations of PFOS and PFOA in drinking water may result in elevated body burdens that may increase the risk of health effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

513-519

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Kissa: Fluorinated Surfactants and Repellents. Marcel Dekker, New York (2001).

Google Scholar

[2] J.P. Giesy, K. Kannan: Environ. Sci. Technol. Vol. 35 (2001), p.1339.

Google Scholar

[3] P. Giesy, K. Kannan: Environ. Sci. Technol. Vol. 36(2002), p. 146A.

Google Scholar

[4] T.Y. Wang, J.S. Khim, C.L. Chen, et al: Environ. Int. Vol. 42 (2012), p.37.

Google Scholar

[5] C. Lau, K. Anitole, C. Hodes, et al: Toxicological Sciences Vol. 99(2007), p.366.

Google Scholar

[6] B.J. Konwick, G.T. Tomy, N. Ismall, et al: Environ. Toxicol. Chem. Vol. 27(2008), p. (2011).

Google Scholar

[7] E. Awad, X.M. Zhang, S.P. Bhavsar, et al: Environ. Sci. Technol. Vol. 45(2011), p.8081.

Google Scholar

[8] R. Renner: Environ. Sci. Technol. Vol. 40(2006), p. (2083).

Google Scholar

[9] http: /chm. pops. int/Programmes/NewPOPs/Publications/tabid/695/language/en-US/Default. aspx.

Google Scholar

[10] D. Trudel, L. Horowitz, M. Wormuth, et al: Risk Analysis Vol. 28(2008), p.251.

Google Scholar

[11] Y.L. Mak, S. Taniyasu, L.W.Y. Yeung, et al: Environ. Sci. Technol. Vol. 43(2009), p.4824.

Google Scholar

[12] A. Möller, L. Ahrens, R. Surm, et al: Environ. Pollut. Vol. 158(2010), p.3243.

Google Scholar

[13] L.J. Bao, K.A. Maruya, S.A. Snyder, et al: Environ. Pollut. Vol. 163(2012), p.100.

Google Scholar

[14] Y.G. Zhao, C.K.C. Wong, M.H. Wong: Chemosphere Vol. 89(2012), p.355.

Google Scholar

[15] N. Saito, K. Sasaki, K. Nakatome, et al: Arch. Environ. Contam. Toxicol. Vol. 45(2003), p.149.

Google Scholar

[16] K.J. Hansen, H.O. Johnson, J.S. Eldridge, et al: Environ. Sci. Technol. Vol. 36(2002), p.1681.

Google Scholar

[17] N. Saito, K. Harada, K. Inoue, et al: J. Occup. Health Vol. 46(2004), p.49.

Google Scholar

[18] N.P.H. Lien, S. Fujii, S. Tanaka, et al: Desalination Vol. 226(2008), p.338.

Google Scholar

[19] M. Murakami, E. Imamura, H. Shinohara, et al: Environ. Sci. Technol. Vol. 42(2008), p.6566.

Google Scholar

[20] S. Takagi, F. Adachi, K. Miyano, et al: Chemosphere Vol. 72(2008), p.1409.

Google Scholar

[21] N. Saito, K. Sasaki, K. Nakatome, et al: Arch. Environ. Contam. Toxicol. Vol. 45(2003), 149.

Google Scholar

[22] Y. Zushi, F. Ye, M. Motegi, et al: Environ. Sci. Technol. Vol. 45(2011), p.2887.

Google Scholar

[23] M.K. So, Y. Miyake, W.Y. Yeung, et al: Chemosphere Vol. 68(2007), p. (2085).

Google Scholar

[24] Y.H. Jin, W. Liu, I. Sato, et al: Chemosphere vol. 77(2009), p.605.

Google Scholar

[25] W. Liu, Y.H. Jin, X. Quan, et al: Environ. Int. Vol. 35(2009), p.737.

Google Scholar

[26] F.S. Li, H.W. Sun, Z.N. Hao, et al: Chemosphere Vol. 84(2011), p.265.

Google Scholar

[27] L.P. Yang, L.Y. Zhu, Z.T. Liu: Chemosphere Vol. 83(2011), p.806.

Google Scholar

[28] J. Zhang, Y.J. Wan, Y.Y. Li, et al: Environ. Pollut. Vol. 159(2011), p.1348.

Google Scholar

[29] J.E. Naile, J.S. Khim, T.Y. Wang, et al: Environ. Pollut. Vol. 158(2010), p.1237.

Google Scholar

[30] S.K. Kim, Y.L. Kho, M. Shoeib, et al: Environ. Pollut. Vol. 159(2011), p.1167.

Google Scholar

[31] J.Y. Hu, J. Yu, S. Tanaka, et al: Water Air Soil. Pollut. Vol. 216(2011), p.179.

Google Scholar

[32] M.H. Cai, Z. Zhao, H.Z. Yang, et al: Environ. Pollut. Vol. 161(2012), p.162.

Google Scholar

[33] Y.G. Zhao, C.K.C. Wong, M.H. Wong: Chemosphere Vol. 89(2012), p.355.

Google Scholar

[34] T. Sakurai, S. Serizawa, T. Isobe, et al: Environ. Sci. Technol. Vol. 44(2010), p.4110.

Google Scholar

[35] F.D. Gilliland, J.S. Mandel: Occup. Med. Vol. 35(1993), p.950.

Google Scholar

[36] S. Takagi, F. Adachi, K. Miyano, et al: Chemosphere Vol. 72(2008), p.1409.

Google Scholar

[37] D. Skutlarek, M. Exner, H. Farber: Environ. Sci. Pollut. Res. Vol. 13(2006), p.299.

Google Scholar

[38] G.B. Post, P.D. Cohn, K.R. Cooper: Environ. Res. Vol. 116(2012), p.93.

Google Scholar

[39] C. Eschauzier, E. Beerendonk, P. Scholte-Veenendaal, et al: Environ. Sci. Technol. Vol. 46(2012), p.1708.

Google Scholar

[40] USEPA, 2009. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) (Washington, D. C).

Google Scholar