Cell Separation Through Ascending and Descending Curvilinear Microchannels

Article Preview

Abstract:

Separation of rare cells such as fetal cells from blood has potential importance in disease investigation and prevention. In this paper we report a new method of cancer cells separation from patient’s blood by inertial focusing technique. A design and simulation of ascending and descending curvilinear microchannels for separation of particles resembling cancer cells have been presented. Computational fluid dynamics (CFD) design and simulation of ascending and descending microchannels is used for cell separation. The simulation was carried out in two stages including focusing and separation. The ascending curvilinear channel design demonstrated favorable focusing and separation. Separation with 100% purity and efficiency of the unwanted particle was achieved at Reynolds number (Re) = 8.50 and velocity 0.105m/s. Reynolds number 9.25 and 10.06 with corresponding velocities 0.115 m/s and 0.125 m/s were also investigated for cell seperation. In case of descending curvilinear channel, cell separation was not good. Considering cancer cells size about 15 µm, our proposed ascending microchannel is a good candidate for cancer cells separation from blood.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1649-1653

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. D. Carlo, Inertial microfluidics, Lab. Chip 9(2009)3038-3046.

Google Scholar

[2] A. Higuchi, S. Yamamiya, B.O. Yoon, M. Sakurai, M. Hara, Peripheral blood cell separation through surface-modified polyurethane membranes, J. Biomed. Mater . Res. A 68 (2003) 34- 42.

DOI: 10.1002/jbm.a.20005

Google Scholar

[3] M. Hasan, A. K. Kasi, J. K. Kasi, N. Afzulpurkar, Anodic aluminum oxide (AAO) to AAO bonding and their application for fabrication of 3D microchannel, Nanosci. Nanotech. Lett. 4 (2012) 569- 573.

DOI: 10.1166/nnl.2012.1354

Google Scholar

[4] M. Hasan, A. K. Kasi, J. K. Kasi, N. Afzulpurkar, S. Porntheeraphat, W. Sripumkhai, Fabrication of thinner anodic aluminum oxide based microchannels, Adv. Mater. Res. 550-553 (2012) 2046-(2050).

DOI: 10.4028/www.scientific.net/amr.550-553.2046

Google Scholar

[5] A. K. Kasi, N. Afzulpurkar, J. K. Kasi, A. Tuantranont, P. Dulyaseree, Utilization of cracks to fabricate anodic aluminum oxide nanoporous tubular and rectangular membrane. J. Vac. Sci. Technol., B, 29 (2011) D1071-D1077.

DOI: 10.1116/1.3604943

Google Scholar

[6] J. K. Kasi, A. K. Kasi, N. Afzulpurkar, M. Hasan, S. Pratontep, A. Poyai. Fabrication of three dimensional AAO structures, Nanosci. Nanotech. Lett. 4 (2012) 537-543.

DOI: 10.1166/nnl.2012.1353

Google Scholar

[7] A. K. Kasi, J. K. Kasi, N. Afzulpurkar, M. Hasan, Bending, Branching of anodic aluminum oxide nanochannels and their applications, J. Vac. Sci. Technol., B 30 (2012) 031805.

DOI: 10.1116/1.4711246

Google Scholar

[8] J. Seo, L. Meng, A. Kole, Membrane-free microfiltration by asymmetric inertial migration, Appl. Phys. Lett. 91(2007) 033901(1-3).

DOI: 10.1063/1.2756272

Google Scholar

[9] K. J. Humphry, P. M. Kulkarni, D. A. Weitz, J. F. Morris, H. A. Stone, Axial and lateral particle ordering in finite Reynolds number channel flows, Phys. Fluids. 22 (2010) 081703.

DOI: 10.1063/1.3478311

Google Scholar

[10] D. R. Gossett, D. D. Carlo, Particle focusing mechanisms in curving confined flows, Anal. Chem. 81(2009) 8459- 8465.

DOI: 10.1021/ac901306y

Google Scholar

[11] M. Radisic, R. K. Iyer, S. K Murthy, Micro- and nanotechnology in cell separation, Int. J. Nanomedicine. 1(2006) 3-14.

Google Scholar

[12] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, Microfluidics for cell separation, Med. Biol. Eng. Comput. 48 (2010) 999-1014.

DOI: 10.1007/s11517-010-0611-4

Google Scholar

[13] C. V. Durgadas, C.P. Sharma, K. Sreenivasan, Fluorescent and super paramagnetic hybrid quantum clusters for magnetic separation and imaging of cancer cells from blood, Nanoscale 3(2011) 4780- 4787.

DOI: 10.1039/c1nr10900f

Google Scholar

[15] W. A. H. S. S Wewala, N. Afzulpurkar , J. K. Kasi, A. K. Kasi, A. Poyai, D. W. Bodhale, Design and simulation of ascending curvilinear micro channel for cancer cell separation from blood, Adv. Res. Mater. 557-559 (2012) 2361-2366.

DOI: 10.4028/www.scientific.net/amr.557-559.2361

Google Scholar

[16] A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab Chip, 8(2008), 1906-(1914).

DOI: 10.1039/b807107a

Google Scholar

[17] J. Xuan, M. K. H. Leung, D. Y. C. Leung, M. Ni, Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream, Chem. Eng. J. 171 (2011) 216-223.

DOI: 10.1016/j.cej.2011.01.011

Google Scholar

[18] K. Nilpueng, S. Wongwises, Flow pattern and pressure drop of vertical upward gas–liquid flow in sinusoidal wavy channels, Exp. Therm. Fluid Sci. 30 (2006) 523-534.

DOI: 10.1016/j.expthermflusci.2005.10.004

Google Scholar

[19] J. M. MacInnes, J. Ortiz-Osorio, P. J. Jordan, G. H. Priestman, R.W.K. Allen, Experimental demonstration of rotating spiral microchannel distillation, Chem. Eng. J. 159 (2010) 159-169.

DOI: 10.1016/j.cej.2010.02.030

Google Scholar

[20] N. Ali, M Sajid, Z. Abbas, T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech. B. Fluids, 29(2010) 387-394.

DOI: 10.1016/j.euromechflu.2010.04.002

Google Scholar

[21] Z. Che, T. N. Wong, N. T Nguyen, An analytical model for a liquid plug moving in curved micro channels , Int. J. Heat. Mass. Trans. 53 (2010) 1977-(1985).

DOI: 10.1016/j.ijheatmasstransfer.2009.12.058

Google Scholar

[22] J. P. Matas, V. Glezer, E. Guazzelli, J. F. Morris, Trains of particles in finite-Reynolds-number pipe flow, Phys. Fluids. 16 (2004) 4192- 4195.

DOI: 10.1063/1.1791460

Google Scholar

[23] S. Ookawara, D. Street, K. Ogawa, Numerical study on development of particle concentration profiles in a curved microchannel, Chem. Eng. Sci. 61(2006) 3714- 3724.

DOI: 10.1016/j.ces.2006.01.016

Google Scholar

[24] D. D. Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, M. Toner, Equilibrium separation and filtration of particles using differential inertial focusing, Anal. Chem. 80(2008) 2204- 2211.

DOI: 10.1021/ac702283m

Google Scholar