[1]
D. D. Carlo, Inertial microfluidics, Lab. Chip 9(2009)3038-3046.
Google Scholar
[2]
A. Higuchi, S. Yamamiya, B.O. Yoon, M. Sakurai, M. Hara, Peripheral blood cell separation through surface-modified polyurethane membranes, J. Biomed. Mater . Res. A 68 (2003) 34- 42.
DOI: 10.1002/jbm.a.20005
Google Scholar
[3]
M. Hasan, A. K. Kasi, J. K. Kasi, N. Afzulpurkar, Anodic aluminum oxide (AAO) to AAO bonding and their application for fabrication of 3D microchannel, Nanosci. Nanotech. Lett. 4 (2012) 569- 573.
DOI: 10.1166/nnl.2012.1354
Google Scholar
[4]
M. Hasan, A. K. Kasi, J. K. Kasi, N. Afzulpurkar, S. Porntheeraphat, W. Sripumkhai, Fabrication of thinner anodic aluminum oxide based microchannels, Adv. Mater. Res. 550-553 (2012) 2046-(2050).
DOI: 10.4028/www.scientific.net/amr.550-553.2046
Google Scholar
[5]
A. K. Kasi, N. Afzulpurkar, J. K. Kasi, A. Tuantranont, P. Dulyaseree, Utilization of cracks to fabricate anodic aluminum oxide nanoporous tubular and rectangular membrane. J. Vac. Sci. Technol., B, 29 (2011) D1071-D1077.
DOI: 10.1116/1.3604943
Google Scholar
[6]
J. K. Kasi, A. K. Kasi, N. Afzulpurkar, M. Hasan, S. Pratontep, A. Poyai. Fabrication of three dimensional AAO structures, Nanosci. Nanotech. Lett. 4 (2012) 537-543.
DOI: 10.1166/nnl.2012.1353
Google Scholar
[7]
A. K. Kasi, J. K. Kasi, N. Afzulpurkar, M. Hasan, Bending, Branching of anodic aluminum oxide nanochannels and their applications, J. Vac. Sci. Technol., B 30 (2012) 031805.
DOI: 10.1116/1.4711246
Google Scholar
[8]
J. Seo, L. Meng, A. Kole, Membrane-free microfiltration by asymmetric inertial migration, Appl. Phys. Lett. 91(2007) 033901(1-3).
DOI: 10.1063/1.2756272
Google Scholar
[9]
K. J. Humphry, P. M. Kulkarni, D. A. Weitz, J. F. Morris, H. A. Stone, Axial and lateral particle ordering in finite Reynolds number channel flows, Phys. Fluids. 22 (2010) 081703.
DOI: 10.1063/1.3478311
Google Scholar
[10]
D. R. Gossett, D. D. Carlo, Particle focusing mechanisms in curving confined flows, Anal. Chem. 81(2009) 8459- 8465.
DOI: 10.1021/ac901306y
Google Scholar
[11]
M. Radisic, R. K. Iyer, S. K Murthy, Micro- and nanotechnology in cell separation, Int. J. Nanomedicine. 1(2006) 3-14.
Google Scholar
[12]
A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, Microfluidics for cell separation, Med. Biol. Eng. Comput. 48 (2010) 999-1014.
DOI: 10.1007/s11517-010-0611-4
Google Scholar
[13]
C. V. Durgadas, C.P. Sharma, K. Sreenivasan, Fluorescent and super paramagnetic hybrid quantum clusters for magnetic separation and imaging of cancer cells from blood, Nanoscale 3(2011) 4780- 4787.
DOI: 10.1039/c1nr10900f
Google Scholar
[15]
W. A. H. S. S Wewala, N. Afzulpurkar , J. K. Kasi, A. K. Kasi, A. Poyai, D. W. Bodhale, Design and simulation of ascending curvilinear micro channel for cancer cell separation from blood, Adv. Res. Mater. 557-559 (2012) 2361-2366.
DOI: 10.4028/www.scientific.net/amr.557-559.2361
Google Scholar
[16]
A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab Chip, 8(2008), 1906-(1914).
DOI: 10.1039/b807107a
Google Scholar
[17]
J. Xuan, M. K. H. Leung, D. Y. C. Leung, M. Ni, Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream, Chem. Eng. J. 171 (2011) 216-223.
DOI: 10.1016/j.cej.2011.01.011
Google Scholar
[18]
K. Nilpueng, S. Wongwises, Flow pattern and pressure drop of vertical upward gas–liquid flow in sinusoidal wavy channels, Exp. Therm. Fluid Sci. 30 (2006) 523-534.
DOI: 10.1016/j.expthermflusci.2005.10.004
Google Scholar
[19]
J. M. MacInnes, J. Ortiz-Osorio, P. J. Jordan, G. H. Priestman, R.W.K. Allen, Experimental demonstration of rotating spiral microchannel distillation, Chem. Eng. J. 159 (2010) 159-169.
DOI: 10.1016/j.cej.2010.02.030
Google Scholar
[20]
N. Ali, M Sajid, Z. Abbas, T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech. B. Fluids, 29(2010) 387-394.
DOI: 10.1016/j.euromechflu.2010.04.002
Google Scholar
[21]
Z. Che, T. N. Wong, N. T Nguyen, An analytical model for a liquid plug moving in curved micro channels , Int. J. Heat. Mass. Trans. 53 (2010) 1977-(1985).
DOI: 10.1016/j.ijheatmasstransfer.2009.12.058
Google Scholar
[22]
J. P. Matas, V. Glezer, E. Guazzelli, J. F. Morris, Trains of particles in finite-Reynolds-number pipe flow, Phys. Fluids. 16 (2004) 4192- 4195.
DOI: 10.1063/1.1791460
Google Scholar
[23]
S. Ookawara, D. Street, K. Ogawa, Numerical study on development of particle concentration profiles in a curved microchannel, Chem. Eng. Sci. 61(2006) 3714- 3724.
DOI: 10.1016/j.ces.2006.01.016
Google Scholar
[24]
D. D. Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, M. Toner, Equilibrium separation and filtration of particles using differential inertial focusing, Anal. Chem. 80(2008) 2204- 2211.
DOI: 10.1021/ac702283m
Google Scholar