[1]
S.S. Doerffer, D.C. Groeneveld, R. Tain, S.C. Cheng, W. Zeggel, Fluid-to-fluid modeling of the critical heat flux in simple and complex geometries, Atomic Energy of Canada Limited, ARD-TD-321 (1991).
Google Scholar
[2]
R.M. Tain, S.C. Cheng, D.C. Groeneveld, Critical heat flux measurements in a round tube for CFCs and CFC alternatives, Int. J. Heat Mass Transfer 36 (1993) 2039–(2049).
DOI: 10.1016/s0017-9310(05)80135-8
Google Scholar
[3]
R.M. Tain, D.C. Groeneveld, S.C. Cheng, Limitations of the fluid-to-fluid scaling technique for critical heat flux in flow boiling, Int. J. Heat Mass Transfer 38 (1995) 2195–2208.
DOI: 10.1016/0017-9310(94)00344-u
Google Scholar
[4]
I.L. Pioro, D.C. Groeneveld, S.C. Cheng, S. Doerffer, A.Z. Vasic, Yu.V. Antoshko, Comparison of CHF measurements in R-134a cooled tubes and the water CHF look-up table, Int. J. Heat Mass Transfer 44 (2001) 73–88.
DOI: 10.1016/s0017-9310(00)00093-4
Google Scholar
[5]
I.L. Pioro, D.C. Groeneveld, L.K.H. Leung, S.S. Doerffer, S.C. Cheng, Yu.V. Antoshko, Y. Guo, A. Vasic, Comparison of CHF measurements in horizontal and vertical tubes cooled with R-134a, Int. J. Heat Mass Transfer 45 (2002) 4435–4450.
DOI: 10.1016/s0017-9310(02)00149-7
Google Scholar
[6]
G.F. Stevens, G.J. Kirby, A quantitative comparison between burn-out data for water at 1000 lb/in2 and Freon-12 at 155 lb/in2, uniformly heated round tubes, vertical upflow, United Kingdom Atomic Energy Authority, AEEW-R327, (1964).
Google Scholar
[7]
S.Y. Ahmad, Fluid to fluid modeling of critical heat flux: a compensated distortion model, Int. J. Heat Mass Transfer 16 (1973) 641–662.
DOI: 10.1016/0017-9310(73)90229-9
Google Scholar
[8]
D.C. Groeneveld, B.P. Kiameh, S.C. Cheng, Prediction of critical heat flux (CHF) for non-aqueous fluids in forced convective boiling, in: Proceedings of the 8th International Heat Transfer Conference, San Francisco, USA, vol. 5 (1986) 2209–2214.
DOI: 10.1615/ihtc8.800
Google Scholar
[9]
Y. Katto, A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes, Int. J. Heat Mass Transfer 21 (1978) 1527–1542.
DOI: 10.1016/0017-9310(78)90009-1
Google Scholar
[10]
A. Katsaounis, Verification of Ahmad's fluid-to-fluid scaling law by bundle experiments, in: Proc. Winter Annual Meeting of the ASME, Chicago, USA (1980) 37–44.
Google Scholar
[11]
C.F. Fighetti, D.G. Reddy, Parametric study of CHF data, EPRI Report NP-2609, Electric Power Research Institute, Palo Alto, California, USA (1982).
Google Scholar
[12]
S.Y. Chun, S.D. Hong, Y.S. Cho, W.P. Baek, Comparison of the CHF data for water and refrigerant HFC-134a by using the fluid-to fluid modeling methods, Int. J. Heat Mass Transfer, in press, doi: 10. 1016/j. ijheatmasstransfer. (2005). 06. 039.
DOI: 10.1016/j.ijheatmasstransfer.2005.06.039
Google Scholar
[13]
Meamer El Nakla, On fluid-to-fluid modeling of film boiling heat transfer using dimensional analysis, International Journal of Multiphase Flow 37 (2011) 229–234.
DOI: 10.1016/j.ijmultiphaseflow.2010.09.004
Google Scholar
[14]
Ransom, V.H., Wang, W., Ishii, M., Use of an ideal model for scaling evaluation. Nucl. Eng. Des. 186 (1998) 135–148.
Google Scholar
[15]
Collier, J.G., Thome, J.R., Convective Boiling and Condensation. Oxford University Press, 1996, New York.
Google Scholar
[16]
Zhang, Ji., Geometry Effect on Post-Dryout Heat Transfer. Master Thesis, University of Ottawa, Ottawa, December (1997).
Google Scholar
[17]
Shang, D.Y., An Investigation of Scaling Laws for Converting Refrigerant Flow Film-Boiling Data into Water Equivalent Values. University of Ottawa Internal report (2002).
Google Scholar