[1]
D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, Yu.F. Ivamov, A.B. Markov, Physical foundations for surface treatment of materials with low energy, high current electron beams, J. Surf. Coat. Technol. 125 (2000) 49-56.
DOI: 10.1016/s0257-8972(99)00604-0
Google Scholar
[2]
D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, A.B. Markov, D.S. Nazarov, Pulsed electron-beam technology for surface modification of metallic materials, J. Vac. Sci. Technol. A 16 (4) (1998) 2480-2488.
DOI: 10.1116/1.581369
Google Scholar
[3]
C. Dong, A.M. Wu, S.Z. Hao, et al., Surface treatment by high current pulsed electron beam, Surf. Coat. Technol. 163-164 (2003) 620-624.
Google Scholar
[4]
A.D. Pogrebnjak, D.I. Proskurovskii, Modification of metal surface layer properties using pulsed electron beams, Phys. Status Solidi A. 145 (1994) 9-49.
DOI: 10.1002/pssa.2211450103
Google Scholar
[5]
V. Rotshtein, Yu. Ivanov, A. Markov, Surface treatment of materials with lowenergy, high-current electron beams, in: Y. Pauleau (Ed. ), Book Materials Surface Processing by Directed Energy Techniques, vol. 763, Elsevier, (2006) 205–240.
DOI: 10.1016/b978-008044496-3/50007-1
Google Scholar
[6]
V.P. Rotshtein, Yu.F. Ivanov, A.B. Markov, D.I. Proskurovsky, K.V. Karlik, K.V. Oskomov, B.V. Uglov, A.K. Kuleshov, M.V. Novitskaya, S.N. Dub, Y. Pauleau, I.A. Shulepov, Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film-substrate system, Surface and Coatings Technology. 22 (2006).
DOI: 10.1016/j.surfcoat.2005.11.007
Google Scholar
[7]
Q. F. Guang, P. L. Yang, Nanocrystalline and amorphous surface structure of 0. 45%C steel produced by high current pulsed electron beam, Mater SCI. 41 (2006) 479-483.
DOI: 10.1007/s10853-005-2463-0
Google Scholar
[8]
J. X. Zou, T. Grosdidier, K. Chuang, Z. Dong, Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel, Acta Materialia. 54 (2006) 5409-5419.
DOI: 10.1016/j.actamat.2006.05.053
Google Scholar
[9]
B. Gao, S. Hao, J. Zou, W. Wu, C. Dong, Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy, Surface & Coatings Technology. 201 (2007) 6297-6303.
DOI: 10.1016/j.surfcoat.2006.11.036
Google Scholar
[10]
J. -H. Huang, Gaseous Hydrogen Embrittlement of a Hydrided Zirconium Alloy, Metallurgical and materials transaction A. 29 (1998) 1047-1056.
DOI: 10.1007/s11661-998-0297-5
Google Scholar
[11]
T. Murakami, H. Mano, K. Kaneda, M. Hata, S. Sasaki, J. Sugimura, Friction and wear properties of zirconium and niobium in a hydrogen, Environment Wear. 268 (2010) 721-729.
DOI: 10.1016/j.wear.2009.11.022
Google Scholar
[12]
S.V. Ivanova, Effect of hydrogen on serviceability of zirconium items VVER and RBMK-type reactors fuel assemblies. International Journal of Hydrogen Energy. 27 (2002) 819-824.
DOI: 10.1016/s0360-3199(01)00160-4
Google Scholar
[13]
I.P. Chernov, Y.P. Cherdantsev, A.M. Lider, Y.I. Tyurin, N.S. Pushilina, S.V. Ivanova, Hydrogen Permeability of Protective Coating Formed by Electron Treatment of Zirconium Alloys, Journal of Surface Investigation X-ray, Synchrotron and Neutron Techniques. 4 (2010).
DOI: 10.1134/s1027451010020151
Google Scholar
[14]
Y. Gou, Y. Li, H. Chen, Evaluation of a delayed hydride cracking in Zr–2. 5Nb CANDU and RBMK pressure tubes, Materials and Design. 30 (2009) 1231-1235.
DOI: 10.1016/j.matdes.2008.06.011
Google Scholar
[15]
Y. S. Kim, Stage I and II behaviors of delayed hydride cracking velocity in zirconium alloys, Journal of Alloys and Compounds. 453 (2008) 210-214.
DOI: 10.1016/j.jallcom.2006.11.197
Google Scholar