Effect of Pulsed Electron Beam Treatment and Hydrogen on Properties of Zirconium Alloy

Article Preview

Abstract:

The paper presents the results of the pulsed beam effect on the structure and phase composition of zirconium alloy. Such treatment is demonstrated to lead to forming of complex morphology martensite in the surface layer of the alloy. The processes of hydrogen absorption by zirconium alloy with modified surface have been studied. Modification of the samples is found to reduce the amount of hydrogen, absorbed by the volume of zirconium alloy during hydrogenation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-71

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, Yu.F. Ivamov, A.B. Markov, Physical foundations for surface treatment of materials with low energy, high current electron beams, J. Surf. Coat. Technol. 125 (2000) 49-56.

DOI: 10.1016/s0257-8972(99)00604-0

Google Scholar

[2] D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, A.B. Markov, D.S. Nazarov, Pulsed electron-beam technology for surface modification of metallic materials, J. Vac. Sci. Technol. A 16 (4) (1998) 2480-2488.

DOI: 10.1116/1.581369

Google Scholar

[3] C. Dong, A.M. Wu, S.Z. Hao, et al., Surface treatment by high current pulsed electron beam, Surf. Coat. Technol. 163-164 (2003) 620-624.

Google Scholar

[4] A.D. Pogrebnjak, D.I. Proskurovskii, Modification of metal surface layer properties using pulsed electron beams, Phys. Status Solidi A. 145 (1994) 9-49.

DOI: 10.1002/pssa.2211450103

Google Scholar

[5] V. Rotshtein, Yu. Ivanov, A. Markov, Surface treatment of materials with lowenergy, high-current electron beams, in: Y. Pauleau (Ed. ), Book Materials Surface Processing by Directed Energy Techniques, vol. 763, Elsevier, (2006) 205–240.

DOI: 10.1016/b978-008044496-3/50007-1

Google Scholar

[6] V.P. Rotshtein, Yu.F. Ivanov, A.B. Markov, D.I. Proskurovsky, K.V. Karlik, K.V. Oskomov, B.V. Uglov, A.K. Kuleshov, M.V. Novitskaya, S.N. Dub, Y. Pauleau, I.A. Shulepov, Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film-substrate system, Surface and Coatings Technology. 22 (2006).

DOI: 10.1016/j.surfcoat.2005.11.007

Google Scholar

[7] Q. F. Guang, P. L. Yang, Nanocrystalline and amorphous surface structure of 0. 45%C steel produced by high current pulsed electron beam, Mater SCI. 41 (2006) 479-483.

DOI: 10.1007/s10853-005-2463-0

Google Scholar

[8] J. X. Zou, T. Grosdidier, K. Chuang, Z. Dong, Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel, Acta Materialia. 54 (2006) 5409-5419.

DOI: 10.1016/j.actamat.2006.05.053

Google Scholar

[9] B. Gao, S. Hao, J. Zou, W. Wu, C. Dong, Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy, Surface & Coatings Technology. 201 (2007) 6297-6303.

DOI: 10.1016/j.surfcoat.2006.11.036

Google Scholar

[10] J. -H. Huang, Gaseous Hydrogen Embrittlement of a Hydrided Zirconium Alloy, Metallurgical and materials transaction A. 29 (1998) 1047-1056.

DOI: 10.1007/s11661-998-0297-5

Google Scholar

[11] T. Murakami, H. Mano, K. Kaneda, M. Hata, S. Sasaki, J. Sugimura, Friction and wear properties of zirconium and niobium in a hydrogen, Environment Wear. 268 (2010) 721-729.

DOI: 10.1016/j.wear.2009.11.022

Google Scholar

[12] S.V. Ivanova, Effect of hydrogen on serviceability of zirconium items VVER and RBMK-type reactors fuel assemblies. International Journal of Hydrogen Energy. 27 (2002) 819-824.

DOI: 10.1016/s0360-3199(01)00160-4

Google Scholar

[13] I.P. Chernov, Y.P. Cherdantsev, A.M. Lider, Y.I. Tyurin, N.S. Pushilina, S.V. Ivanova, Hydrogen Permeability of Protective Coating Formed by Electron Treatment of Zirconium Alloys, Journal of Surface Investigation X-ray, Synchrotron and Neutron Techniques. 4 (2010).

DOI: 10.1134/s1027451010020151

Google Scholar

[14] Y. Gou, Y. Li, H. Chen, Evaluation of a delayed hydride cracking in Zr–2. 5Nb CANDU and RBMK pressure tubes, Materials and Design. 30 (2009) 1231-1235.

DOI: 10.1016/j.matdes.2008.06.011

Google Scholar

[15] Y. S. Kim, Stage I and II behaviors of delayed hydride cracking velocity in zirconium alloys, Journal of Alloys and Compounds. 453 (2008) 210-214.

DOI: 10.1016/j.jallcom.2006.11.197

Google Scholar