Anealing Effect on the Microstructure and Mechanical Properties of LaB6 Films

Article Preview

Abstract:

Lathanum hexaboride films were deposited by dc magnetron sputtering with the same sputtering parameters. AFM, XRD, Raman spectrum was used to characterize the film. The as-deposited films were annealed at 400 oC, 500 oC and 600 oC, respectively. After 400 oC’s annealing, morphology of fracture cross-sections of the films exhibited evolutions from columnar to the equiaxial, and the crystallinity of the film was improved as well. It was also found annealing process generated negative effect on the film’s hardness and elastic modulus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2514-2518

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Lafferty: J. Appl. Phys Vol. 22 (1951), p.299.

Google Scholar

[2] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmölz and H. Störi: Surf. Coat. Technol Vol. 74-75 (1995), p.1020.

DOI: 10.1016/0257-8972(95)08292-1

Google Scholar

[3] B. Warcholinski and A. Gilewicz: Vacuum Vol. xxx (2012), p.1.

Google Scholar

[4] S. Schelm, and G. B. Smith: J. Appl. Phys Vol. 97 (2005), p.124314.

Google Scholar

[5] S. Schelm, and G. B. Smith: Appl. Phys Lett Vol. 82 (2003), p.4346.

Google Scholar

[6] D. Mandrus, B. C. Sales and R. Jin: Phys. Rev. B Vol. 64 (2001), p.012302.

Google Scholar

[7] H. R. Ott, M. Chernikov, E. Felder, L. Degiorgi, E. G. Moshopoulou, J. L. Sarrao and Z. Fisk: Phys. B Vol. 102 (1997), p.337.

DOI: 10.1007/s002570050297

Google Scholar

[8] T. Tanaka, T. Akahane, E. Bannai, S. Kawai, N. Tsuda and Y. Ishizawa: J. Phys. C: Solid State Phys Vol. 9 (1976), p.1235.

Google Scholar

[9] W. Wadhauser, C. Mitterer, J. Laimer and H Störi: Surf. Coat. Technol Vol. 74-75 (1995), p.890.

Google Scholar

[10] V. Cracium and D. Cracium: Appl. Surf. Sci. Vol. 247 (2005), p.384.

Google Scholar

[11] Y. Kato, H. Arai, R. Yamauchi, N. Tsuchimine, S. Kobayashi, K. Saeki, N. Takezawa, S. Kaneko, M. Mitsuhashi, H. Funakubo and M. Yoshimoto: J. Cryst. Growth Vol. 330 (2011), p.39.

DOI: 10.1016/j.jcrysgro.2011.07.001

Google Scholar

[12] J. Xu, G. H. Min, X.H. Zhao, L.J. Hu and H.S. Yu: Mod. Phys. Lett B Vol. 23 (2009), p.1077.

Google Scholar

[13] D. Wang, L. Zhang, G.M. Min, H.S. Yu and Y.F. Yuan: Appl. Surf. Sci. Vol. 257 (2011), p.6418.

Google Scholar

[14] W. Wang, Y.F. Yuan, L. Zhang and G.H. Min: Ceram. Int Vol. 38 (2012), p.4313.

Google Scholar

[15] X. H. Zhao, G. H. Min, J. Xu, L. Zhang, and H. S. Yu: Metallofiz Nov Tekh Vol. 33(2011), p.375.

Google Scholar

[16] T. Kajiwara, T. Urakabe, K. Sano, K. Fukuyama and K. Watanabe: Vacuum Vol. 41 (1990), p.1224.

Google Scholar

[17] John A. Thornton: Ann. Rev. Mater. Sci Vol. 7 (1977), p.239.

Google Scholar

[18] J. -E. Sundgren: Thin Solid films Vol. 128 (1985), p.21.

Google Scholar