Effect of Argon Pressure on the Structure and Resistivity of Dc Magnetron Sputtered LaB6 Films

Article Preview

Abstract:

A series of Si (100) based LaB6 films were deposited by D.C. magnetron sputtering with different argon pressure, one of the most important deposition parameters, which affect both the structure and properties of the thin films. XRD, AFM, Raman, and Hall measuring instrument were used to characterize the film structure and performances. It was found that argon pressure strongly influenced the condensing particles’ kinetic energy obviously through affecting the scattering processes of sputtered energetic particles, which played a crucial role in the growth of the LaB6 films. LaB6 film deposited at 1.0 Pa showed a higher crystallinity degree. Morever, the film displayed a more uniform structure and better electrical property, the relationship between microsture, electrical property and crystallinity were demonstrted as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2519-2523

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kajiwara, T. Urakabe, K. Sano, K. Fukuyama, K. Watanabe, S. Baba, T. Nakano and A. Kinbara: Vacuum Vol. 41 (1990), p.1224.

DOI: 10.1016/0042-207x(90)93917-8

Google Scholar

[2] S.K. Shreyas, T.S. James: J. Phys. Chem. Solids. Vol. 59 (1998), p.1343.

Google Scholar

[3] V. Craciun, D. Craciun: Appl. Surf. Sci Vol. 247 (2005), p.384.

Google Scholar

[4] A.S. Kuzanyan, S.R. Harutyunyan, V.O. Vardanyan, G.R. Badalyan, V.A. Petrosyan and V.S. Kuzanyan: J Solid. State. Chem Vol. 179 (2006), p.2862.

DOI: 10.1016/j.jssc.2006.01.040

Google Scholar

[5] J. Xu, G.H. Min, X.H. Zhao and H.S. Yu: Adv. Mater. Res Vol. 79-82 (2009), p.915.

Google Scholar

[6] Y. Yuan, L. Zhang, L. Liang, K. He, R. Liu and G. Min: Ceram. Int Vol. 37 (2011), p.2891.

Google Scholar

[7] C. Mitterer, W. Waldhauser, U. Beck and G. Reiners: Surf. Coat. Technol Vol. 86/87 (1996), p.715.

Google Scholar

[8] F.X. Cheng and C.H. Jiang: Mater. Des Vol. 26 (2005), p.369.

Google Scholar

[9] T. Nakano, S. Baba, A. Kobayashi, A. Kinbara, T. Kajiwara and K. Watanabe: J. Vac. Sci. Technol Vol. 3 (1991), p.547.

Google Scholar

[10] Y. Sakuraba, H. Kato, F. Sato, T. Miyazaki, N. Kimura and H. Aoki: J. Magn. Magn. Mater Vol. 272-276 (2004), p.1145.

Google Scholar

[11] S.T. Li, X.L. Qiao and J.G. Chen. Chin: J. Nonferrous. Met Vol. 15 (2005), p.1214 (In Chinese).

Google Scholar

[12] N. Ogitaa, S. Nagai, N. Okamoto, F. Iga, S. Kunii, J. Akimitsu and M. Udagawa: Physica B Vol. 328 (2003), p.131.

DOI: 10.1016/s0921-4526(02)01827-6

Google Scholar

[13] A. Kinbara, T. Nakano, A. Kobayashi, S. Baba, and T. Kajiwara: Appl. Surf. Sci Vol. 70-71(1993), p.742.

Google Scholar

[14] J.L. Huang, Y. Pan, J.Y. Chang, and B.S. Yao: Surf. Coat. Technol Vol. 184 (2004), p.188.

Google Scholar

[15] Y. Hu and X.G. Diao: Vacuum Vol. 75 (2004), p.183.

Google Scholar