Research on the Electrical Energy of Piezoelectric-Embedded Asphalt Mixture

Article Preview

Abstract:

There is an important effect on road safety with no lighting facilities near the wild road. With the piezoelectric materials embedded in the asphalt concrete as the smart aggregates, the piezoelectric asphalt concrete transforms the vibrational energy of road surface into electrical energy, to supply the road lighting facilities or be stored up. In this study, the electrical energy of piezoelectric-embedded asphalt mixture by using UTM and wheel tester. The results show that PMnS-PZN-PZT ceramic doped with 0.45wt% Fe2O3 (4mm×8pieces) be embedded in the AC-10 asphalt concrete which can obtain well road performance and micropower electrical energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Van Randeraat, R.E. Setterington: Piezoelectric Ceramics, Elcoma Technical Publications Department, Netherlands, (1974).

Google Scholar

[2] Shu, Y.C., Lien, I.C. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 2006, 15, 1499-1512.

DOI: 10.1088/0964-1726/15/6/001

Google Scholar

[3] Shu, Y.C., Lien, I.C. Efficiency of energy conversion for a piezoelectric power harvesting system. Smart Mater. Struct. 2006, 16, 2429-2438.

DOI: 10.1088/0960-1317/16/11/026

Google Scholar

[4] Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct. 2007, 16, R1-R21.

DOI: 10.1088/0964-1726/16/3/r01

Google Scholar

[5] Wischke, M.; Goldschmidtboeing, F.; Woias, P. A Low Cost Generator Concept for Energy Harvesting Applications. In Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2007, Lyon, France, 10–14 June 2007; pp.875-878.

DOI: 10.1109/sensor.2007.4300270

Google Scholar

[6] Kan, J.; Qiu, J.; Tang K.; Zhu, K.; Shao, C. Modeling and simulation of piezoelectric composite diaphragms for energy harvesting. Int. J. Appl. Electromagn. Mech. 2009, 30, 95-106.

Google Scholar

[7] Liang J.; Liao W-H. Energy flow in piezoelectric energy harvesting systems. Smart Mater. Struct. 2011, 20, 015005.

DOI: 10.1088/0964-1726/20/1/015005

Google Scholar

[8] Cheng Xin, Xu Dongyu, Lu Lingchao et. al. Performance investigation of 1-3 piezoelectric ceramic–cement composite. Materials Chemistry and Physics 121 (2010) 63-69.

DOI: 10.1016/j.matchemphys.2009.12.045

Google Scholar

[9] Daniel Guyomar, Mickaël Lallart. Recent Progress in Piezoelectric Conversion and Energy Harvesting. Micromachines 2011, 2, 274-294.

DOI: 10.3390/mi2020274

Google Scholar

[10] Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 2005, 52, 584-595.

DOI: 10.1109/tuffc.2005.1428041

Google Scholar

[11] Lefeuvre, E.; Badel, A.; Richard, C.; Petit, L.; Guyomar, D. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens. Actuat. A: Phys. 2006, 126, 405-416.

DOI: 10.1016/j.sna.2005.10.043

Google Scholar

[12] Yueming Li, Wen Chen, Jing Zhou et al, Dielectric and piezoelecrtic properties of lead-free(Na0. 5Bi0. 5)TiO3–NaNbO3 ceramics. Materials Science and Engineering B, Volume 112, Issue 1, 15 September 2004, Pages 5-9.

DOI: 10.1016/j.mseb.2004.04.019

Google Scholar

[13] MAO Jiebing, ZHOU Jing, ZHENG Huiqing et al. Effects of Fe2O3 Doping on the Properties of PMnS-PZN-PZT Piezoelectric Ceramic. Journal of Synthetic Crystals, Vo. l 39, No. 1 February, 2010, Pages 72-76.

Google Scholar