Preparation and Characterization of 1-methyl-3-butyl Nitrate

Article Preview

Abstract:

1-methyl-3-butyl Imidazole chloride is prepared by 1–methyl imidazole and chlorinated n-butane. The synthesis reaction of 1-methyl-3-butyl imidazole tetrafluoroborate is in the acetone. The solubility of NaNO3 and BMIC in acetone is not large, but due to the insolubility in acetone of reaction product NaCl and continuous precipitation from the liquid phase in the reaction process, so as to promote the reaction continuously towards forward direction. The colorless transparent and odorless BMINO3 are gotten. We use infrared spectrometer for the structure characterization, it is proved that we have gotten BMINO3 room temperature ionic liquids. BMIC and BMINO3 ionic liquids have better solubility in H2O, ethanol, ethyl acetate, acetone, acetonitrile, and methanol, and is insoluble in the ether and cyclohexane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2675-2678

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Doyle, S. K . Choi, G. Proulx, Electrochem. Soc., Vol. 147 (2000) 34.

Google Scholar

[2] A. Noda, M. Watanabe, Electrochim. Acta., Vol., 45 (2000) 1265.

Google Scholar

[3] M. Yoshizawa, K. Ito-Akita , H. Ohno, Electrochim. Acta., Vol. 45 (2000) 1617.

Google Scholar

[4] G. Maciej, L. Andrzej, S. Izabela, Electrochimica Acta, Vol. 51 (2006) 5567.

Google Scholar

[5] J. G. Huddleston , H. D. Willauer, R. P. Swatloski, Chem. Commun, Vol. 1998: 1765.

Google Scholar

[6] S. W. John, Journal of Molecular Catalysis A: Chemical, Vol. 214 (2004) 11.

Google Scholar

[7] M. L. Dietz, J. Dzielawa,. Chem. Commun., Vol, 20 (2001) 2124.

Google Scholar

[8] C. J. Bradaric, A. Downard, C. Kennedy, Green Chem., Vol, 5(2003) 143.

Google Scholar

[9] D. B. Macleod, Trans. Faraday Soc., Vol, 19(1923) 38.

Google Scholar

[10] A. K. Thomas, L. O. John, L. R. Richard, Chem. Eng. Data, Vol, 46(2001) 1007.

Google Scholar

[11] M. S. Deetlefs, M. Shara, Phys. Chem. Chem. Phys., Vol, 8 (2006) 642.

Google Scholar

[12] A. E. Visser, R. P. Swatloski, K. D. Rogers, Ind. Eng. Res., Vol, 39 (2000) 3596.

Google Scholar

[13] L. A. Blanchard, D. Hancu, E. J. Beckman, Nature, Vol, 399 (1999) 28.

Google Scholar

[14] G. Abhishek, B. M. Bhuwan, P. Tripathi, J. Comput. Method. Mol. Design, Vol, 4 (2011) 14.

Google Scholar

[15] J.Z. Yang, X.M. Lu, J.S. Gui. Green Chem., Vol, 6 (2004) 541.

Google Scholar

[16] G. H. Leslie , B. J. Donald, Thermochimica Acta, Vol, 414 (2004) 125.

Google Scholar

[17] S. T. Handy . Current Org. Chem. Vol, 9 (2005) 959.

Google Scholar

[18] G. Carrera, J. Aires-de-Sousa. Green Chem., Vol, 7 (2005) 20.

Google Scholar

[19] P. K. Bhowmik, H. Han, J. J. Cebe. Liquid Crystals, Vol, 30(2003) 1433.

Google Scholar

[20] L. A. Blanchard, D. Hancu, E. J. Beckman Nature, Vol, 399(6731) 28.

Google Scholar

[21] A. E. Visser, R. P. Swatloski, K. D. Rogers. Ind. Eng. Res., Vol, 39 (2000) 3596.

Google Scholar