[1]
S.P. Kang, A.R. East, F.J. Trujillo, Colour vision system evaluation of bicolour fruit: A case study with 'B74' mango, Postharvest Biology and Technology, Vol. 49, pp.77-85, (2008).
DOI: 10.1016/j.postharvbio.2007.12.011
Google Scholar
[2]
J. Blasco, N. Aleixos, E. Molto, Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm, Journal of Food Engineering, Vol. 81, pp.535-543, (2007).
DOI: 10.1016/j.jfoodeng.2006.12.007
Google Scholar
[3]
M.Z. Abdullah, J. Mohamad-Saleh, A.S. Fathinul-Syahir, Discrimination and classification of fresh-cut starfruits using automated machine vision system, Journal of Food Engineering, Vol. 76 pp.506-523, (2006).
DOI: 10.1016/j.jfoodeng.2005.05.053
Google Scholar
[4]
H.K. Mebatsion, J. Paliwal, D.S. Jayas, Evaluation of variations in the shape of grain types using principal components analysis of the elliptic Fourier descriptors, Computers and Electronics in Agriculture, Vol. 80, pp.63-70, (2012).
DOI: 10.1016/j.compag.2011.10.016
Google Scholar
[5]
A. Herrero-Langreo, E. Fernández-Ahumada, J.M. Roger, Combination of optical and non-destructive mechanical techniques for the measurement of maturity in peach, Journal of Food Engineering, Vol. 108, pp.150-157, (2012).
DOI: 10.1016/j.jfoodeng.2011.07.004
Google Scholar
[6]
Kavdir I., Guyer D. E, Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features, Biosystem Engineering , Vol. 89, No. 3, pp.331-344, (2004).
DOI: 10.1016/j.biosystemseng.2004.08.008
Google Scholar
[7]
Mehl, P.M., Chen, Y.R., Kim, M.S., Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations, Journal Food Engineering, Vol. 61, pp.67-81, (2004).
DOI: 10.1016/s0260-8774(03)00188-2
Google Scholar
[8]
Zhan Hui, Li Xiaoyu, Zhou Zhu, Detection of chestnut defect based on data fusion of near-infrared spectroscopy and machine vision, Transactions of the CSAE, Vol. 27, No. 2, p.345 – 349, 2011(in Chinese).
Google Scholar
[9]
Dah-Jye Lee, Robert Schoenberger, James Archibald, Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging, Journal of Food Engineering, Vol. 86 , pp.388-398, (2008).
DOI: 10.1016/j.jfoodeng.2007.10.021
Google Scholar
[10]
Yousef Al Ohali, Computer vision based date fruit grading system: Design and implementation, Journal of King Saud University-Computer and Information Sciences, Vol. 23, pp.29-36, (2011).
DOI: 10.1016/j.jksuci.2010.03.003
Google Scholar
[11]
Li Jiangbo, Rao Xiuqin, Ying Yibin, Detection of navel surface defects based on illumination-reflectance model, Transactions of the CSAE, Vol. 27, No. 7, pp.338-342, 2011(in Chinese).
Google Scholar