[1]
R.A. Haslam and T.A. Bentley, Follow-up investigations of slip, trip and fall accidents among postal delivery workers. Safety Science, Vol. 32 (1999), pp.33-47.
DOI: 10.1016/s0925-7535(99)00009-0
Google Scholar
[2]
J.P. Hanson, M.S. Redfern and M. Mazumdar, Predicting slips and falls considering required and available friction. Ergonomics, Vol. 42 (1999), pp.1619-1633.
DOI: 10.1080/001401399184712
Google Scholar
[3]
M.S. Redfern and J. DiPasquale, Biomechanics of descending ramps. Gait and Postures, Vol. 6 (1997), pp.119-125.
DOI: 10.1016/s0966-6362(97)01117-x
Google Scholar
[4]
R. Cham and M.S. Redfern, Heel contact dynamics during slip events on level and inclined surfaces. Safety Science, Vol. 40 (2002), pp.559-576.
DOI: 10.1016/s0925-7535(01)00059-5
Google Scholar
[5]
J. Sun, M. Walters and N. Svensson, Lloyd, D. The influence of surface slope on human gait characteristics: a study of urban pedestrians walking on an inclined surface. Ergonomics, Vol. 39 (1996), pp.677-692.
DOI: 10.1080/00140139608964489
Google Scholar
[6]
R. Cham and M.S. Redfern, Changes in gait when anticipating slippery floors. Gait Posture, Vol. 15 (2002), pp.159-171.
DOI: 10.1016/s0966-6362(01)00150-3
Google Scholar
[7]
W.R. Chang, R. Grönqvist, S. Leclercq and R. Myung, Makkonen, L., Strandberg, L., Brungraber, R.J., Mattke, U., Thorpe, S.C. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics, Vol. 44 (2001).
DOI: 10.1080/00140130110085574
Google Scholar
[8]
W.R. Chang, The Effect of Slip Criterion and Time on Friction Measurement. Safety Science, Vol. 40 (2002), pp.593-611.
Google Scholar
[9]
T.E. Lockhart, An integrated approach towards identifying age-related mechanisms of slip initiated falls. Journal of Electromyography and Kinesiology, Vol. 18 (2008), pp.205-217.
DOI: 10.1016/j.jelekin.2007.06.006
Google Scholar
[10]
K.W. Li, W.R. Chang, J.C. Wei and C.H. Kuo, Friction measurements on ramps using the Brungraber Mark II slipmeter. Safety Science, Vol. 45 (2006), pp.375-386.
DOI: 10.1016/j.ssci.2005.11.003
Google Scholar
[11]
ASTM E303-93 Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester. Book of Standards, Volume: 04. 03, USA (2008).
DOI: 10.1520/e0303
Google Scholar
[12]
K.W. Li, Y.W. Hsu, W.R. Chang and C.H. Lin, Friction Measurements on Three Commonly used Floors on a College Campus Under Dry, Wet, and Sand-Covered Conditions. Safety Science, Vol. 45 (2007), pp.980-992.
DOI: 10.1016/j.ssci.2006.08.030
Google Scholar
[13]
R. Grönqvist, M. Hirvonen and A. Tohv, Evaluation of three portable floor slipperiness testers. International Journal of Industrial Ergonomics, Vol. 25 (1999), pp.85-95.
DOI: 10.1016/s0169-8141(98)00101-2
Google Scholar
[14]
American National Standard InstituteStandard for the Provision of Slip Resistance on Walking/ Working Surfaces. American National Standard Institute (ANSI)/American Society of Safety Engineers (ASSE) A 1264. 2, ASSE, Des Plaines, Illinois (2001).
Google Scholar
[15]
W.R. Chang, The Effect of Surface Roughness on the Measurements of Slip Resistance. International Journal of Industrial Ergonomics, Vol. 24 (1999), pp.299-313.
DOI: 10.1016/s0169-8141(98)00038-9
Google Scholar
[16]
W.R. Chang, I.J. Kim, D.P. Manning and B. Bunterngchit, The Role of Surface Roughness in the Measurement of Slipperiness. Ergonomics, Vol. 44 (2001), pp.1200-1216.
DOI: 10.1080/00140130110085565
Google Scholar