Analytical Target Cascading Method on Braking System Characteristics Optimization

Article Preview

Abstract:

Because of the Limitations and shortcomings of the traditional multi-disciplinary optimization methods, this paper presents a useful optimal method named Analytical Target Cascading (ATC) for braking system characteristics optimization. The deceleration and pedal sense are chosen as the design targets. Brake system is divided into 4 subsystems: pedal, vacuum booster, master cylinder, brake. The optimization results show that ATC has a high degree of accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mitschke. M: automobile dynamics (China Communications Press, Beijing 1994).

Google Scholar

[2] YU Zhisheng: Automobile Theory (China Machine Press, Beijing 2006).

Google Scholar

[3] Papalambros P. Y. and Wilde D. J. Principles of optimal design: modeling and computation (2nd ed. )[M], New York : Cambridge University Press, (2000).

Google Scholar

[4] Papalambros P. Y., Michelena N. F. Trends and challenges in system design optimization [c], Proceedings of the International Workshop on Multidisciplinary Design Optimization, University of Michigan: [s. l. ], (2000).

Google Scholar

[5] Kim H. M., Michelena N., Papalambros P. and Jiang T. Target Cascading in Optimal System Design,. Proceedings of DETC 2000: 26th Design Automation Conference, DETC200/DAC-14265, (2000).

DOI: 10.1115/detc2000/dac-14265

Google Scholar

[6] D. Geoff Rideont, Jeffrey L. Stein. Target Cascading: A design Process for Achieving Vehicle Ride and Handling Target. Proceedings of IMECE, (2001).

DOI: 10.1115/imece2001/dsc-24533

Google Scholar

[7] Kim H. M., Kokkolaras M., Louca L. Delagrammatikas, G., Michelena N., Filipi Z. Papalambros P. Y. and Assanis D., Target Cascading in Vehicle Redesign: a Class VI Truck Study, Int. J. Veh. Des., 2002, 29~31.

DOI: 10.1504/ijvd.2002.002010

Google Scholar

[8] Michelena, N. F., Park H., Papalambros P. Y. Convergence Properties of Analytical Target Cascading, AIAA Journal, 2003, p.897~905.

DOI: 10.2514/2.2025

Google Scholar

[9] Michalek J. J., Papalambros P. Y. An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading[J]. Journal of Mechanical Design, 2005, 127(2): 206~214.

DOI: 10.1115/1.1830046

Google Scholar

[10] S. Tosserams, L. E. P. Etman, P. Y. Papalambros, J. E. Rooda. An Augmented Lagrangian Relaxation for Analytical Target Cascading using the Alternating Directions Method of Multipliers. 6th World Congress of Structural and Multidisciplinary Optimization, (2005).

DOI: 10.1007/s00158-005-0579-0

Google Scholar

[11] Kim H. M., Chen W., Wiecek M. M. Lagrangian coordination for enhancing the convergence of analytical target cascading[J]. AIAA Journal, 2006, 44(10): 21197~2207.

DOI: 10.2514/1.15326

Google Scholar