Testing of the ABS Materials for Application in Fused Deposition Modeling Technology

Article Preview

Abstract:

In paper are presented knowledge about types and properties of materials used for production of models using by rapid prototyping Fused Deposition Modelling (FDM) method. In today used rapid prototyping technologies is used material in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In FDM rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-140

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Plancak, M.: Rapid Prototyping & Rapid Tooling. FTN Publishing, Novi Sad, (2009).

Google Scholar

[2] S. Krunic, M. Perinic, S. Maricic, Rapid Prototyping: Application. Strojarstvo: Journal for Theory and Application in Mechanical Engineering, Vol. 30, No. 2, 2010, pp.91-100, ISSN 0562-1887.

Google Scholar

[3] C. K. Chua, K. F. Leong, C. S. Lim, Rapid Prototyping: Principles and Applications, World Scientific Publishing, Singapore, 2003, 420 p.

Google Scholar

[4] D. Kovacevic, I. Budak, A. Antic, B. Kosec, Special Finite Elements: Theoretical background and Application, Tehnicki vejsnik 18, 4, 2011, pp.649-655, ISSN 1330-3651.

Google Scholar

[5] L. N. Marcincinova, M. Janak, Application of Progressive Materials for Rapid Prototyping Technology. Manufacturing Technology, Vol. 12, No. 12, 2012, pp.75-79, ISSN 1213-2489.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/75

Google Scholar

[6] J. N. Marcincin, J. Barna, L. N. Marcincinova, V. Fecova, Analyses and Solutions on Technical and Economical Aspects of Rapid Prototyping Technology. Tehnički Vjesnik - Technical Gazette, Vol. 18, No. 4, 2011, pp.657-661, ISSN 1330-3651.

DOI: 10.1063/1.4707641

Google Scholar

[7] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, Increasing of Product Quality Produced by Rapid Prototyping Technology. Manufacturing Technology, Vol. 12, No. 12, 2012, pp.71-75, ISSN 1213-2489.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/71

Google Scholar

[8] FDM: Materials & datasheets: http: /www. materialise. com/fdm-materials, (2012).

Google Scholar

[9] S. H. Massod, W. Q. Song, W. Q.: Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Materials & Design, Vol. 25, No. 7, 2004, pp.587-594.

DOI: 10.1016/j.matdes.2004.02.009

Google Scholar

[10] S. -H. Ahn, M. Montero, D. Odell, S. Roundy, P. K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping, Vol. 8, No. 4, 2002, pp.248-257.

DOI: 10.1108/13552540210441166

Google Scholar

[11] L. N. Marcincinova, J. Barna, V. Fecova, M. Janak, J. N. Marcincin, Intelligent design of experimental gearbox with rapid prototyping technology support. In: INES 2011, International Conference on Intelligent Engineering Systems, Poprad, 2011, pp.77-80.

DOI: 10.1109/ines.2011.5954723

Google Scholar

[12] L. N. Marcincinova, V. Fecova, J. N. Marcincin, M. Janak, J. Barna, Effective Utilization of Rapid Prototyping Technology. Materials Science Forum, Vol. 713, 2012, pp.61-66, ISSN 1662-9752.

DOI: 10.4028/www.scientific.net/msf.713.61

Google Scholar

[13] L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, J. Torok, Special materials used in FDM rapid prototyping technology application. INES 2012 - IEEE 16th International Conference on Intelligent Engineering Systems, Proceedings, art. no. 6249805, 2012, pp.73-76.

DOI: 10.1109/ines.2012.6249805

Google Scholar

[14] L. Novakova-Marcincinova, V. Fecova, J. Novak-Marcincin, M. Janak, J. Barna, Effective Utilization of Rapid Prototyping Technology. AIP Conference Proceedings, Vol. 1431, 2012, pp.834-841, ISSN 0094-243X.

DOI: 10.1063/1.4707641

Google Scholar

[15] J, Novak-Marcincin, L. Novakova-Marcincinova, J. Barna, M. Janak, Application of FDM rapid prototyping technology in experimental gearbox development process. Tehnicki Vjesnik, Vol. 19, No. 3, 2012, pp.689-694, ISSN 1330-3651.

DOI: 10.1109/ines.2011.5954723

Google Scholar

[16] J. Novak-Marcincin, L. Novakova-Marcincinova, M. Janak, V. Fecova, Simulation of Flexible Manufacturing Systems for Logistics Optimization. In: 4th IEEE International Symposium on Logistics and Industrial Informatics LINDI 2012, Smolenice, 2012, pp.37-40.

DOI: 10.1109/lindi.2012.6319506

Google Scholar

[17] R. Pacurar, N. Balc, P. Berce, Research on Improving the Mechanical Properties of the SLS Metal Parts. In: Annals of DAAAM for 2008 & Proceedings of the 19th International DAAAM Symposium. Trnava, 2008, pp.1003-1004.

Google Scholar

[18] R. Pacurar, N. Balc, F. Prem, Research on how to improve the accuracy of the SLM metallic parts. In: 14th International Conference on Material Forming Esaform, Belfast, Book Series: AIP Conference Proceedings, Vol. 1353, 2011, pp.1385-1390.

DOI: 10.1063/1.3589710

Google Scholar