Multi-Objective Disturbance Attenuation Control for T-S Fuzzy System with Hard Constraints

Article Preview

Abstract:

This paper exploits a multi-objective control technique for T-S fuzzy system with hard constraints, which include actuator saturation and state constraints resulting from some mechanical structure constraints. The disturbance attenuation performance is characterized H norm, while requirements for respecting hard constraints are specified by the generalized H2 norm. The T-S fuzzy system control problem is then formulated in a mixed H /generalized H2 control problem , and an state feedback solution is derived using LMI optimization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

453-456

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. C. Goodwin, M. M. Seron, and J. A. De Doná. Constrained Control and Estimation: an Optimization Approach[M] . London: Springer(2005).

Google Scholar

[2] K. Tanaka, T. Ikeda and H. O. Wang. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(2): 250-265.

DOI: 10.1109/91.669023

Google Scholar

[3] C. Peng, Q. L. Han, D. Yue, E. Tian. Sampled-data robust H∞ control for T–S fuzzy systems with time delay and uncertainties[J]. Fuzzy Sets and Systems, 2011, 179(1):20-33.

DOI: 10.1016/j.fss.2011.05.001

Google Scholar

[4] X. D. Liu, Q. L. Zhang. New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[J]. Automatica, 2003, 39: 1571-1582.

DOI: 10.1016/s0005-1098(03)00172-9

Google Scholar

[5] S. Zhou, G. Feng, J. Lam, S. Xu. Robust H∞ control for discrete-time fuzzy systems via basis-dependent lyapunov functions [J]. Information Sciences, 2005, 174: 197-217..

DOI: 10.1016/j.ins.2004.07.015

Google Scholar

[6] X. D. Liu, Q. L. Zhang. Approaches to quadratic stability conditions and H∞ control designs for T-S fuzzy systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 830-839.

DOI: 10.1109/tfuzz.2003.819834

Google Scholar

[7] S. Kau, H. Lee, C. M. Yang, C. H. Lee, H. Lin, C. H. Fang. Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Sets and SystemsVolume 158 Issue 2, January, (2007)

DOI: 10.1016/j.fss.2006.09.010

Google Scholar

[8] C. Scherer, P. Gahinet and M. Chilali. Multiopjective Output-Feedback Control via LMI Optimization. IEEE Transactions on Automatic Control. 42(7):896-911,(1997)

DOI: 10.1109/9.599969

Google Scholar

[9] H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto. Parameterized linear matrix inequlity techniques in fuzzy control system design[J]. IEEE Tran. on Fuzzy Systems, 2001, 9(2): 324-332.

DOI: 10.1109/91.919253

Google Scholar