[1]
G. C. Goodwin, M. M. Seron, and J. A. De Doná. Constrained Control and Estimation: an Optimization Approach[M] . London: Springer(2005).
Google Scholar
[2]
K. Tanaka, T. Ikeda and H. O. Wang. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(2): 250-265.
DOI: 10.1109/91.669023
Google Scholar
[3]
C. Peng, Q. L. Han, D. Yue, E. Tian. Sampled-data robust H∞ control for T–S fuzzy systems with time delay and uncertainties[J]. Fuzzy Sets and Systems, 2011, 179(1):20-33.
DOI: 10.1016/j.fss.2011.05.001
Google Scholar
[4]
X. D. Liu, Q. L. Zhang. New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[J]. Automatica, 2003, 39: 1571-1582.
DOI: 10.1016/s0005-1098(03)00172-9
Google Scholar
[5]
S. Zhou, G. Feng, J. Lam, S. Xu. Robust H∞ control for discrete-time fuzzy systems via basis-dependent lyapunov functions [J]. Information Sciences, 2005, 174: 197-217..
DOI: 10.1016/j.ins.2004.07.015
Google Scholar
[6]
X. D. Liu, Q. L. Zhang. Approaches to quadratic stability conditions and H∞ control designs for T-S fuzzy systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 830-839.
DOI: 10.1109/tfuzz.2003.819834
Google Scholar
[7]
S. Kau, H. Lee, C. M. Yang, C. H. Lee, H. Lin, C. H. Fang. Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Sets and SystemsVolume 158 Issue 2, January, (2007)
DOI: 10.1016/j.fss.2006.09.010
Google Scholar
[8]
C. Scherer, P. Gahinet and M. Chilali. Multiopjective Output-Feedback Control via LMI Optimization. IEEE Transactions on Automatic Control. 42(7):896-911,(1997)
DOI: 10.1109/9.599969
Google Scholar
[9]
H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto. Parameterized linear matrix inequlity techniques in fuzzy control system design[J]. IEEE Tran. on Fuzzy Systems, 2001, 9(2): 324-332.
DOI: 10.1109/91.919253
Google Scholar