[1]
Gerrard, W. Selection procedures adopted by industry for introducing new machine tools. (1988).
Google Scholar
[2]
Taha, Z. and S. Rostam, A fuzzy AHP–ANN-based decision support system for machine tool selection in a flexible manufacturing cell. The International Journal of Advanced Manufacturing Technology, (2011) 1-15.
DOI: 10.1007/s00170-011-3323-5
Google Scholar
[3]
Yurdakul, M., AHP as a strategic decision-making tool to justify machine tool selection. journal of materials processing technology, 146(3) (2004) 365-376.
DOI: 10.1016/j.jmatprotec.2003.11.026
Google Scholar
[4]
Çimren, E., B. Çatay, and E. Budak, Development of a machine tool selection system using AHP. The International Journal of Advanced Manufacturing Technology, 35(3) (2007) 363-376.
DOI: 10.1007/s00170-006-0714-0
Google Scholar
[5]
Lin, Z.C. and C.B. Yang, Evaluation of machine selection by the AHP method. journal of materials processing technology, 57(3) (1996) 253-258.
Google Scholar
[6]
Budak, E., A decision support system for machine tool selection. Journal of Manufacturing Technology Management, 15(1) (2004) 101-109.
DOI: 10.1108/09576060410512374
Google Scholar
[7]
Abdel-Malek, L. and L.J. Resare, Algorithm based decision support system for the concerted selection of equipment in machining/assembly cells. International Journal of Production Research, 38(2) (2000) 323-339.
DOI: 10.1080/002075400189437
Google Scholar
[8]
Ayağ, Z. and R. Özdemir, A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17(2) (2006) 179-190.
DOI: 10.1007/s10845-005-6635-1
Google Scholar
[9]
Önüt, S., S. Soner Kara, and T. Efendigil, A hybrid fuzzy MCDM approach to machine tool selection. Journal of Intelligent Manufacturing, 19(4) (2008) 443-453.
DOI: 10.1007/s10845-008-0095-3
Google Scholar
[10]
Ayağ, Z., A hybrid approach to machine-tool selection through AHP and simulation. International Journal of Production Research, 45(9) (2007) 2029-(2050).
DOI: 10.1080/00207540600724856
Google Scholar
[11]
Taha, Z. and S. Rostam, A hybrid fuzzy AHP-PROMETHEE decision support system for machine tool selection in flexible manufacturing cell. Journal of Intelligent Manufacturing, (2011) 1-13.
DOI: 10.1007/s10845-011-0560-2
Google Scholar
[12]
Ayağ, Z. and R. Özdemir, An intelligent approach to machine tool selection through fuzzy analytic network process. Journal of Intelligent Manufacturing, 22(2) (2011) 163-177.
DOI: 10.1007/s10845-009-0269-7
Google Scholar
[13]
Ayağ, Z. and R. Gürcan Özdemir, Evaluating machine tool alternatives through modified TOPSIS and alpha-cut based fuzzy ANP. International Journal of Production Economics, (2012).
DOI: 10.1016/j.ijpe.2012.02.009
Google Scholar
[14]
Yurdakul, M. and Y.T. İç, Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. journal of materials processing technology, 209(1) (2009) 310-317.
DOI: 10.1016/j.jmatprotec.2008.02.006
Google Scholar
[15]
Wang, T.Y., C.F. Shaw, and Y.L. Chen, Machine selection in flexible manufacturing cell: a fuzzy multiple attribute decision-making approach. International Journal of Production Research, 38(9) (2000) 2079-(2097).
DOI: 10.1080/002075400188519
Google Scholar
[16]
Durán, O. and J. Aguilo, Computer-aided machine-tool selection based on a Fuzzy-AHP approach. Expert Systems with Applications, 34(3) (2008) 1787-1794.
DOI: 10.1016/j.eswa.2007.01.046
Google Scholar
[17]
Ertuğrul, İ. and M. Güneş, Fuzzy Multi-criteria Decision Making Method for Machine Selection. Analysis and Design of Intelligent Systems using Soft Computing Techniques, (2007). 638-648.
DOI: 10.1007/978-3-540-72432-2_65
Google Scholar
[18]
Chtourou, H., W. Masmoudi, and A. Maalej, An expert system for manufacturing systems machine selection. Expert Systems with Applications, 28(3) (2005) 461-467.
DOI: 10.1016/j.eswa.2004.12.007
Google Scholar
[19]
Alberti, M., et al., Design of a decision support system for machine tool selection based on machine characteristics and performance tests. Journal of Intelligent Manufacturing, 22(2) (2011) 263-277.
DOI: 10.1007/s10845-009-0286-6
Google Scholar
[20]
Balaji, C.M., A. Gurumurthy, and R. Kodali. Selection of a machine tool for FMS using ELECTRE III—a case study. 2009. IEEE.
DOI: 10.1109/coase.2009.5234125
Google Scholar
[21]
Abdi, M., Fuzzy multi-criteria decision model for evaluating reconfigurable machines. International Journal of Production Economics, 117(1) (2009) 1-15.
DOI: 10.1016/j.ijpe.2008.06.009
Google Scholar
[22]
Atanassov, K.T. and K. Atanassov, Intuitionistic fuzzy sets1999: Physica-Verlag Heidelberg.
Google Scholar
[23]
Zixue, G., Q. Meiran, and Z. Xin. A new approach based on intuitionistic fuzzy set for selection of suppliers. in Natural Computation (ICNC), 2010 Sixth International Conference on. (2010).
DOI: 10.1109/icnc.2010.5583294
Google Scholar
[24]
Hájek, P. and V. Olej, Selection and Classification of Public Capital Projects using IF-Sets. (2011).
Google Scholar
[25]
Hung, C.C. and L.H. Chen, A fuzzy TOPSIS decision making model with entropy weight under intuitionistic fuzzy environment. Proceedings of the International MultiConference of Engineers and Computer Scientists, 1 (2009) 13-16.
Google Scholar
[26]
Zhang, H. and L. Yu, MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets. Knowledge-Based Systems, (2012).
DOI: 10.1016/j.knosys.2012.01.003
Google Scholar
[27]
Boran, F.E., An integrated intuitionistic fuzzy multi criteria decision making method for facility location selection. Mathematical and Computational Applications, 16(2) (2011) 487.
DOI: 10.3390/mca16020487
Google Scholar
[28]
Szmidt, E. and J. Kacprzyk, Distances between intuitionistic fuzzy sets. Fuzzy sets and systems, 114(3) (2000) 505-518.
DOI: 10.1016/s0165-0114(98)00244-9
Google Scholar
[29]
Yang, Y. and F. Chiclana, Consistency of 2D and 3D distances of intuitionistic fuzzy sets. Expert Systems with Applications, (2012).
DOI: 10.1016/j.eswa.2012.01.199
Google Scholar
[30]
Chen, T.Y. and C.H. Li, Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis. Information Sciences, 180(21) (2010) 4207-4222.
DOI: 10.1016/j.ins.2010.07.009
Google Scholar
[31]
Xu, Z., Intuitionistic fuzzy aggregation operators. Fuzzy Systems, IEEE Transactions on. 15(6) (2007) 1179-1187.
DOI: 10.1109/tfuzz.2006.890678
Google Scholar
[32]
Boran, F.E., et al., A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8) (2009) 11363-11368.
DOI: 10.1016/j.eswa.2009.03.039
Google Scholar