[1]
H. Schenck, E. Steinmetz and K. Mehta, Equilibrium and Kinetics of Precipitation of Alumina in System Iron-Oxygen-Aluminium at 1600°C, Arch. Eisenhüttenw., 41 (1970) 131-138.
Google Scholar
[2]
H. Sakao, K. Ito and Y. Wanibe, Principles of deoxidation, Tetsu-to-Hagane, 53 (1971) 1863-1882.
DOI: 10.2355/tetsutohagane1955.57.13_1863
Google Scholar
[3]
K. Ito, T. Kondo, M. Maeda and K. Sano, On the Dissolution Process of Deoxidizer into Molten Iron and the Mechanism of Formation of Oxide Inclusions, Tetsu-to-Hagane, 57 (1971) 1933-(1942).
DOI: 10.2355/tetsutohagane1955.57.13_1933
Google Scholar
[4]
R. Kusakawa, Y. Shiobara and T. Araki, Formation Mechanism of Dendritic and Spherical Alumina Formed When Iron is Deoxidized by Aluminum, Tetsu-to-Hagane, 64 (1978) 2129-2138.
DOI: 10.2355/tetsutohagane1955.64.14_2129
Google Scholar
[5]
E. Ichise, On the Minimum Appears on the Al-O-Al2O3 Equilibrium Concentration Curve, Tetsu-to-Hagane, 77 (1991) 197-200.
Google Scholar
[6]
H. Suito, H. Inoue and R. Inoue, Aluminium-Oxygen Equilibrium between CaO-Al2O3 Melts and Liquid Iron, Tetsu-to-Hagane, 78 (1992) 375-382.
DOI: 10.2355/isijinternational.31.1381
Google Scholar
[7]
H. Itoh, M. Hino and S. Ban-ya, Assessment of Al deoxidation equilibrium in liquid iron, Tetsu-to-Hagane, 83 (1997) 773-778.
DOI: 10.2355/tetsutohagane1955.83.12_773
Google Scholar
[8]
I. Jung, S. A. Decterov and A. D. Pelton, A thermodynamic model for deoxidation equilibria in steel, Metall. Mater. Trans. B, 35 (2004) 493-507.
DOI: 10.1007/s11663-004-0050-4
Google Scholar
[9]
S. K. Choudhary, S. Chandra and A. Ghosh, Prediction of deoxidation and inclusion precipitation in semikilled steel, Metall. Mater. Trans. B, 36 (2005) 59-66.
DOI: 10.1007/s11663-005-0006-3
Google Scholar
[10]
K. Kawakami, Generation Mechanism of Non-Metallic inclusions in High-Cleanliness Steel, Sanyo Thec. Rep., 14 (2007) 22-35.
Google Scholar
[11]
M. Sun, I. Jung and H. Lee, Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation, Met. Mater. Int., 14 (2008) 791-798.
DOI: 10.3365/met.mat.2008.12.791
Google Scholar
[12]
A. N. Conejoa and D. E. Hernándezb, Optimization of aluminum deoxidation practice in the ladle furnace, Mater. Manuf. Proc., 21 (2006) 796-803.
Google Scholar
[13]
Y. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukam and K. Morita, Aluminum deoxidation equilibrium of molten iron–aluminum alloy with wide aluminum composition range at 1873 K, ISIJ Int., 49 (2009) 1483-1489.
DOI: 10.2355/isijinternational.49.1483
Google Scholar
[14]
E. Zinngrebe, C. V. Hoek, H. Visser, A. Westendorp, I. Jung, Inclusion population evolution in Ti-alloyed Al-killed steel during secondary steelmaking process, ISIJ Int., 52 (2012) 52-61.
DOI: 10.2355/isijinternational.52.52
Google Scholar
[15]
Y. Ehara, S. Yokoyama, M. Kawakami, Formation Mechanism of Inclusions Containing MgO・Al2O3 Spinel in Type 304 Stainless Steel,Tetsu-to-Hagane,93 (2007) 208-214.
DOI: 10.2355/tetsutohagane.93.208
Google Scholar
[16]
Idem, Control of Formation of Spinel Inclusion in Type 304 Stainless Steel by Slag Composition,Tetsu-to-Hagane,93 (2007) 475-482.
DOI: 10.2355/tetsutohagane.93.475
Google Scholar
[17]
Y. Ehara, S. Yokoyama and Y. Habara, Control of formation of MgO・Al2O3 spinel in Type 304 stainless steel by controlling slag composition, ICS2008, 403-406.
Google Scholar
[18]
M. Kawakami, H. Kitamura, S. Yokoyama and J. Kim, Effect of Aluminum and Oxygen Content on Diffusivity of Aluminum in Molten Iron, ISIJ Inter., 37 (1997) 425-431.
DOI: 10.2355/isijinternational.37.425
Google Scholar
[19]
The Japan society for the promotion of science, the 19th committee on steelmaking, Steelmaking date source book revised edition, Gordon and Breach Science Publishers, 1998, p.45.
Google Scholar
[20]
A. McLean and R. G. Ward, Thermodynamics of hercynite formation, JISI, 204 (1966) 8-11.
Google Scholar
[21]
R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, Wiley international edition, John Wiley and Sons, 1960, p.599.
Google Scholar