[1]
M. Smart, Scramjets, in: Advances on Propulsion Technology for High-Speed Aircraft, RTO-EN-AVT-150, paper No. 9, Neuilly-sur-Seine, France, 2008, pp.9-1 – 9-38.
Google Scholar
[2]
J.J. Bertin, R.M. Cummings, Fifty years of hypersonics: where we've been, where we're going, Progress in Aerospace Sci., Vol. 39, 2003, p.511–36.
DOI: 10.1016/s0376-0421(03)00079-4
Google Scholar
[3]
H.L. Reed, W.S. Saric, and D. Arnal, Linear stability theory applied to boundary layers, Annu Rev Fluid Mech., 28: 389–428, (1997).
DOI: 10.1146/annurev.fl.28.010196.002133
Google Scholar
[4]
M.R. Malik, Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects, Journal of Spacecraft Rockets, 40(3): 332–44, (2003).
DOI: 10.2514/2.3968
Google Scholar
[5]
S. Dhawan, R. Narasimha, Some properties of boundary layer during the transition from laminar to turbulent flow motion, Journal of Fluid and Mechanics, Vol. 3, p.418–436, (1958).
DOI: 10.1017/s0022112058000094
Google Scholar
[6]
J. Steelant, E. Dick, Modeling of laminar-turbulent transition for high freestream turbulence, Journal of Fluids and Engineering, 123(1): 22–30, (2001).
DOI: 10.1115/1.1340623
Google Scholar
[7]
Y. Suzen, G. Xiong, and P. Huang, Prediction of transitional flows in low-pressure turbines using an intermittency transport equation, AIAA Journal , Vol. 40, No. 2, p.254–266, (2002).
DOI: 10.2514/3.15057
Google Scholar
[8]
S. Schneider, Hypersonic laminar–turbulent transition on circular cones and scramjet forebodies, Progress in Aerospace Sciences, Vol. 40 p.1–50, (2004).
DOI: 10.1016/j.paerosci.2003.11.001
Google Scholar
[9]
T. Ito, L.A. Randall, and S.P. Schneider, Effect of noise on roughness-induced boundary-layer transition for scramjet inlet, J Spacecraft Rockets, 38(5): 692–698, (2001).
DOI: 10.2514/2.3754
Google Scholar
[10]
S.A. Berry, A.H. Auslender, A.D. Dilley, and J.F. Calleja, Hypersonic Boundary Layer Trip Development for Hyper-X, Journal of Spacecraft and Rockets, Vol. 38, No. 6, pp.853-864, (2001).
DOI: 10.2514/2.3775
Google Scholar
[11]
S.A. Berry, A. Auslender, A.D. Dilley, and J. Calleja, Hypersonic boundary-layer trip development for Hyper-X, AIAA Paper 2000-4012, (2000).
DOI: 10.2514/6.2000-4012
Google Scholar
[12]
S.A. Berry, M. di-Fulvio, and M.K. Kowalkowski, Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel, NASA/TM-2000-210316, (2000).
Google Scholar
[13]
E. Reshotko, Boundary layer instability, transition, and control, AIAA Paper 94-0001, The 1994 Dryden Lecture in Research, (1994).
Google Scholar
[14]
E. Reshotko, Transition prediction: supersonic & hypersonic flows, RTO-EN-AVT-151, (2008).
Google Scholar
[15]
S.R. Pate, Supersonic boundary-layer transition: effects of roughness and freestream disturbances, AIAA J., 9(5): 797–803, (1971).
DOI: 10.2514/3.6278
Google Scholar
[16]
S. Matsumura, S.P. Schneider, and S.A. Berry, Streamwise vortex instability and transition on a generic scramjet forebody, AIAA Paper 2003-3592, (2003).
DOI: 10.2514/6.2003-3592
Google Scholar
[17]
B.U. Reinartz, J. Ballmann, and R. Boyce, Numerical investigation of wall temperature and entropy layer effects on double edge shock/boundary layer interactions, AIAA 2006-8137, (2006).
DOI: 10.2514/6.2006-8137
Google Scholar
[18]
Y. Yao, Y. Zheng, and D. Rincon, Shock induced separation flows in Scramjet intakes, in: Int. Symp. on Physics of Fluids, Lijiang, Kunming, 11-15 June, (2011).
Google Scholar