[1]
K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: A Historical Overview and Future Prospects, Jpn J. Appl. Phys. 44.
Google Scholar
[12]
(2005), 8269-8285.
Google Scholar
[2]
W. Wang, J. Tao, T. Wang, L. Wang, Photocatalytic activity of porous TiO2 films prepared by anodic oxidation, Rare Metals. 26.
DOI: 10.1016/s1001-0521(07)60173-9
Google Scholar
[2]
(2007), 136-141.
Google Scholar
[3]
A.E. Goresy, M. Chen, L. Dubrovinsky, P. Gillet, G. Graup, An ultradense polymorph of rutile with seven coordinated titanium from Ries Carter, Science. 293.
DOI: 10.1126/science.1062342
Google Scholar
[5534]
(2001), 1467-1470.
Google Scholar
[4]
O. Carp, C. L Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid. State. Ch. 32.
Google Scholar
[1]
(2004), 33-177.
Google Scholar
[5]
A. Mills, and S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108.
Google Scholar
[1]
(1997), 1-35.
Google Scholar
[6]
M.V. Diamanti, M. Ormellese, E. Marin, A. Lanzutti, A. Mele, M.P. Pedeferri, Anodic titanium oxide as immobilized photocatalyst in UV or visible light devices, J. Hazard. Mater. 186 (2011), 2103-2109.
DOI: 10.1016/j.jhazmat.2010.12.128
Google Scholar
[7]
D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewater by chemical oxidation pre-treatment, J. Chem. Technol. Biot. 79.
DOI: 10.1002/jctb.1020
Google Scholar
[5]
(2004), 431-454.
Google Scholar
[8]
Y. Nakano, K. Okawa, W. Nishijima, M. Okada, Ozone decomposition of hazardous chemical substance in organic solvents, Water Res. 37.
DOI: 10.1016/s0043-1354(03)00077-0
Google Scholar
[11]
(2003), 2595-2598.
Google Scholar
[9]
S. Chiron, A. Fernandez-Alba, A. Rodriguez, E. Garcia-Calvo, Pesticide chemical oxidation: state-of-the-art, Water Res. 34 (2000), 366-377.
DOI: 10.1016/s0043-1354(99)00173-6
Google Scholar
[10]
S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous, J. Am. Chem. S. 99.
Google Scholar
[1]
(1977), 303-304.
Google Scholar
[11]
N. Masahashi, S. Semboshi, N. Ohtsu, M. Oku, Microstructure and superhydrophilicity of anodic TiO2 films on pure titanium, Thin Solid Films, 516 (2008), 7488-7496.
DOI: 10.1016/j.tsf.2008.03.047
Google Scholar
[12]
Y. Han., D. Chen, J. Sun, Y. Zhang, K. Xu, UV enhanced bioactivity and cell response of micro arc oxidized titania coatings, Acta Biomaterialia. 4 (2008), 1518-1529.
DOI: 10.1016/j.actbio.2008.03.005
Google Scholar
[13]
X. Liu, X. Zhao, B. Li, C. Cao, Y. Dong, C. Ding, P.K. Chu, UV-irradiation-induced bioactivity nanostructural surface, Acta Biomaterialia. 4 (2008), 544-552.
DOI: 10.1016/j.actbio.2008.01.011
Google Scholar
[14]
T. Shozui, K. Tsuru, S. Hayakawa, A. Osaka, In vitro apatite forming ability of titania film depends on their substrate, Ceram. S. Jpn. 116 (2007), 530-535.
Google Scholar
[15]
M. Ueda, T. Kinoshita, M. Ikeda, M. Ogawa, Photo induced formation of hydroxyapatite on TiO2 synthesized by a chemical-hydrothermal treatment, Mater. Sci. Eng. C. 29 (2009), 2246-2249.
DOI: 10.1016/j.msec.2009.05.008
Google Scholar
[16]
K. Uetsuki, H. Kaneda, Y. Shirosaki, S. Hayakawa, A. Osaka, Effects of UV-irradiation on in vitro apatite-forming ability of TiO2 layers, Mater. Sci. Eng. B. 173 (2010), 213-215.
DOI: 10.1016/j.mseb.2009.11.013
Google Scholar
[17]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[15]
(2006), 2907-2915.
Google Scholar
[18]
T. Kokubo, H. Kushtani, S. Sakka, T. Kitsugi, T. Yamamoru, Solution able to produce in vivo surface-structure changes in bioactive glass ceramic A-W3, J. Biomed. Mater. Res. 24.
DOI: 10.1002/jbm.820240607
Google Scholar
[6]
(1990), 721-734.
Google Scholar
[19]
N.K. Kuromoto, R.A. Simão, G.A. Soares, Titanium oxide films produce on commercially pure titanium by anodic oxidation with different voltages, Mater. Charact. 58 (2006), 114-121.
DOI: 10.1016/j.matchar.2006.03.020
Google Scholar
[20]
H.Z. Abdullah, C. C Sorrell, TiO2 Thick Film by Anodic Oxidation, Mater. Sci. Forum. 561-565 (2007), 2159-2162.
Google Scholar
[21]
X. Cui, H.M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, T. Nakamura, Preparation of bioactive titania films on titanium metal via anodic oxidation, Dent. Mater. 25 (2009), 80-86.
DOI: 10.1016/j.dental.2008.04.012
Google Scholar
[22]
T. Kasuga, H. Kondo, M. Nagomi, Apatite formation on TiO2 in simulated body fluid, J. Cryst. Growth. 235 [1-4] (2002), 235-240.
DOI: 10.1016/s0022-0248(01)01782-1
Google Scholar
[23]
A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63.
Google Scholar
[12]
(2008), 515-582.
Google Scholar
[24]
A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconducter Electrode, Nature. 238.
Google Scholar
[1972]
37-38.
Google Scholar
[25]
M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Effect of Water Treatment on the Apatite-Forming Ability of NaOH-Treated Titanium Metal, J. Biomed. Mater. Res. 63.
DOI: 10.1002/jbm.10304
Google Scholar
[5]
(2002), 522-230.
Google Scholar
[26]
H.Z. Abdullah, C. C Sorrell, Gel Oxidation of Titanium and Effect of UV Irradiation on Precipitation Of Hydroxyapatite From Simulated Body Fluid, Adv. Mater. Res. 488-489 (2012), 1229-1237.
DOI: 10.4028/www.scientific.net/amr.488-489.1229
Google Scholar