Short Review: Effect of UV Light on Precipitation of Hydroxyapatite on TiO2 in Simulated Body Fluid

Article Preview

Abstract:

A number of previous studies on titanium dioxide (TiO2) proven the presence of anatase has enhance hydroxyapatite (HAP) precipitation on TiO2 surface which beneficial for biomedical usage especially in dental and orthopedics. The anatase phase of TiO2 is an ideal photocatalyst agent. It helps to enhance the chemical reaction after irradiating with ultra violet (UV) light. The effect of UV light irradiation to the precipitation of HAP on TiO2 surface while soaking in simulated body fluid (SBF) increased the formation of HAP. UV light also can be applied as pre-treatment, where UV light was irradiating before SBF immersion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-329

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: A Historical Overview and Future Prospects, Jpn J. Appl. Phys. 44.

Google Scholar

[12] (2005), 8269-8285.

Google Scholar

[2] W. Wang, J. Tao, T. Wang, L. Wang, Photocatalytic activity of porous TiO2 films prepared by anodic oxidation, Rare Metals. 26.

DOI: 10.1016/s1001-0521(07)60173-9

Google Scholar

[2] (2007), 136-141.

Google Scholar

[3] A.E. Goresy, M. Chen, L. Dubrovinsky, P. Gillet, G. Graup, An ultradense polymorph of rutile with seven coordinated titanium from Ries Carter, Science. 293.

DOI: 10.1126/science.1062342

Google Scholar

[5534] (2001), 1467-1470.

Google Scholar

[4] O. Carp, C. L Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid. State. Ch. 32.

Google Scholar

[1] (2004), 33-177.

Google Scholar

[5] A. Mills, and S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108.

Google Scholar

[1] (1997), 1-35.

Google Scholar

[6] M.V. Diamanti, M. Ormellese, E. Marin, A. Lanzutti, A. Mele, M.P. Pedeferri, Anodic titanium oxide as immobilized photocatalyst in UV or visible light devices, J. Hazard. Mater. 186 (2011), 2103-2109.

DOI: 10.1016/j.jhazmat.2010.12.128

Google Scholar

[7] D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewater by chemical oxidation pre-treatment, J. Chem. Technol. Biot. 79.

DOI: 10.1002/jctb.1020

Google Scholar

[5] (2004), 431-454.

Google Scholar

[8] Y. Nakano, K. Okawa, W. Nishijima, M. Okada, Ozone decomposition of hazardous chemical substance in organic solvents, Water Res. 37.

DOI: 10.1016/s0043-1354(03)00077-0

Google Scholar

[11] (2003), 2595-2598.

Google Scholar

[9] S. Chiron, A. Fernandez-Alba, A. Rodriguez, E. Garcia-Calvo, Pesticide chemical oxidation: state-of-the-art, Water Res. 34 (2000), 366-377.

DOI: 10.1016/s0043-1354(99)00173-6

Google Scholar

[10] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous, J. Am. Chem. S. 99.

Google Scholar

[1] (1977), 303-304.

Google Scholar

[11] N. Masahashi, S. Semboshi, N. Ohtsu, M. Oku, Microstructure and superhydrophilicity of anodic TiO2 films on pure titanium, Thin Solid Films, 516 (2008), 7488-7496.

DOI: 10.1016/j.tsf.2008.03.047

Google Scholar

[12] Y. Han., D. Chen, J. Sun, Y. Zhang, K. Xu, UV enhanced bioactivity and cell response of micro arc oxidized titania coatings, Acta Biomaterialia. 4 (2008), 1518-1529.

DOI: 10.1016/j.actbio.2008.03.005

Google Scholar

[13] X. Liu, X. Zhao, B. Li, C. Cao, Y. Dong, C. Ding, P.K. Chu, UV-irradiation-induced bioactivity nanostructural surface, Acta Biomaterialia. 4 (2008), 544-552.

DOI: 10.1016/j.actbio.2008.01.011

Google Scholar

[14] T. Shozui, K. Tsuru, S. Hayakawa, A. Osaka, In vitro apatite forming ability of titania film depends on their substrate, Ceram. S. Jpn. 116 (2007), 530-535.

Google Scholar

[15] M. Ueda, T. Kinoshita, M. Ikeda, M. Ogawa, Photo induced formation of hydroxyapatite on TiO2 synthesized by a chemical-hydrothermal treatment, Mater. Sci. Eng. C. 29 (2009), 2246-2249.

DOI: 10.1016/j.msec.2009.05.008

Google Scholar

[16] K. Uetsuki, H. Kaneda, Y. Shirosaki, S. Hayakawa, A. Osaka, Effects of UV-irradiation on in vitro apatite-forming ability of TiO2 layers, Mater. Sci. Eng. B. 173 (2010), 213-215.

DOI: 10.1016/j.mseb.2009.11.013

Google Scholar

[17] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[15] (2006), 2907-2915.

Google Scholar

[18] T. Kokubo, H. Kushtani, S. Sakka, T. Kitsugi, T. Yamamoru, Solution able to produce in vivo surface-structure changes in bioactive glass ceramic A-W3, J. Biomed. Mater. Res. 24.

DOI: 10.1002/jbm.820240607

Google Scholar

[6] (1990), 721-734.

Google Scholar

[19] N.K. Kuromoto, R.A. Simão, G.A. Soares, Titanium oxide films produce on commercially pure titanium by anodic oxidation with different voltages, Mater. Charact. 58 (2006), 114-121.

DOI: 10.1016/j.matchar.2006.03.020

Google Scholar

[20] H.Z. Abdullah, C. C Sorrell, TiO2 Thick Film by Anodic Oxidation, Mater. Sci. Forum. 561-565 (2007), 2159-2162.

Google Scholar

[21] X. Cui, H.M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, T. Nakamura, Preparation of bioactive titania films on titanium metal via anodic oxidation, Dent. Mater. 25 (2009), 80-86.

DOI: 10.1016/j.dental.2008.04.012

Google Scholar

[22] T. Kasuga, H. Kondo, M. Nagomi, Apatite formation on TiO2 in simulated body fluid, J. Cryst. Growth. 235 [1-4] (2002), 235-240.

DOI: 10.1016/s0022-0248(01)01782-1

Google Scholar

[23] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63.

Google Scholar

[12] (2008), 515-582.

Google Scholar

[24] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconducter Electrode, Nature. 238.

Google Scholar

[1972] 37-38.

Google Scholar

[25] M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Effect of Water Treatment on the Apatite-Forming Ability of NaOH-Treated Titanium Metal, J. Biomed. Mater. Res. 63.

DOI: 10.1002/jbm.10304

Google Scholar

[5] (2002), 522-230.

Google Scholar

[26] H.Z. Abdullah, C. C Sorrell, Gel Oxidation of Titanium and Effect of UV Irradiation on Precipitation Of Hydroxyapatite From Simulated Body Fluid, Adv. Mater. Res. 488-489 (2012), 1229-1237.

DOI: 10.4028/www.scientific.net/amr.488-489.1229

Google Scholar