[1]
C.Q. Yuan, Z. Peng, X.P. Yan & X.C. Zhou, Surface roughness evolutions in sliding wear process, Wear. 265 (2008) 341–348.
DOI: 10.1016/j.wear.2007.11.002
Google Scholar
[2]
D.A. Axinte & R.C. Dewes, Surface integrity of hot work steel after high speed milling-experimental data and empirical models, Journal of Materials Processing Technology. 127 (2002) 325-335.
DOI: 10.1016/s0924-0136(02)00282-0
Google Scholar
[3]
W. Grzesik. Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications. First edition, Oxford, UK: Elsevier (2008).
Google Scholar
[4]
R.W. Phillips, Surface Coating Technology. 68–69 (1994) 770.
Google Scholar
[5]
B. Griffiths, Manufacturing Surface Technology: Surface Integrity and Functional Performance, London: Penton Press (2001).
Google Scholar
[6]
M.M. El-Khabeery, S.M. Saleh & M.R. Ramadan, Some observations of surface integrity of deep drilling holes, Wear. 142 (1991) 331–349.
DOI: 10.1016/0043-1648(91)90173-r
Google Scholar
[7]
J.A. Ghani, I.A. Choudhury & H.H. Masjuki, Wear mechanism of TiN coated carbide and uncoated cermets tools at high cutting speed applications, Journal of Material Processing Technology. 153-154 (2004) 1067-1073.
DOI: 10.1016/j.jmatprotec.2004.04.352
Google Scholar
[8]
E.A. Rahim & H. Sasahara, An analysis of surface integrity when drilling inconel 718 using palm oil and synthetic ester under MQL condition, Machining Science and Technology. 15 (1) (2011) 76 — 90.
DOI: 10.1080/10910344.2011.557967
Google Scholar
[9]
J. Sun & Y.B. Guo, A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V, Journal of Materials Processing Technology. 209 (2009) 4036–4042.
DOI: 10.1016/j.jmatprotec.2008.09.022
Google Scholar
[10]
A. Ginting & M. Nouari, Surface integrity of dry machined titanium alloys, International Journal of Machine Tools & Manufacture. 49 (2009) 325–332.
DOI: 10.1016/j.ijmachtools.2008.10.011
Google Scholar
[11]
R.S. Pawade, S.S. Joshi, P.K. Brahmankar & M. Rahman, An investigation of cutting forces and surface damage in high speed turning of Inconel 718, Journal of Materials Processing Technology. 192–193 (2007) 139–146.
DOI: 10.1016/j.jmatprotec.2007.04.049
Google Scholar
[12]
W.Y.H. Liew, S. Yuan & B.K.A. Ngoi, Evaluation of machining performance of STAVAX with PCBN tools, International Journal Advance Manufacturing Technology. 23 (2004) 11–19.
DOI: 10.1007/s00170-002-1520-y
Google Scholar
[13]
E.M. Trent & P.K. Wright, Metal Cutting. Fourth Edition. Newton: Butterworth-Heinemann (2004).
Google Scholar
[14]
T.I. El-Wardany, H.A. Kishawy & M.A. Elbestawi, Surface Integrity of Die Material in High Speed Hard Machining, Part 1: Micrographical Analysis, Transactions of the ASME. (2000) 122.
DOI: 10.1115/1.1286367
Google Scholar
[15]
A.R.C. Sharman, J.J. Hughes & K. Ridgway, Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy, Machining Science and Technology. 8 (3) (2004) 399 – 414.
DOI: 10.1081/mst-200039865
Google Scholar