[1]
Wu, C., et al., Properties of lead-free solder alloys with rare earth element additions. Mat Scien R, 2004. 44(1): pp.1-44.
Google Scholar
[2]
Tu, K.N. and K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology. Mat Scien R, 2001. 34(1): pp.1-58.
DOI: 10.1016/s0927-796x(01)00029-8
Google Scholar
[3]
Katsuaki, S., Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials Science, 2001. 5(1): pp.55-64.
DOI: 10.1016/s1359-0286(00)00036-x
Google Scholar
[4]
Frear, D. Motorola Semiconductor Products Sector. 2003.; Available from: www. semiconductor. net.
Google Scholar
[5]
Islam, M., et al., Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder. J Alloy Compd, 2005. 400(1-2): pp.136-144.
DOI: 10.1016/j.jallcom.2005.03.053
Google Scholar
[6]
Cannis, J., Green IC packaging. Advanced Packaging, 2001. 8: pp.33-38.
Google Scholar
[7]
Manko, H.H., Solders and soldering: materials, design, production, and analysis for reliable bonding2001: McGraw-Hill Professional.
Google Scholar
[8]
Abtew, M. and G. Selvaduray, Lead-free solders in microelectronics. Mat Scien R, 2000. 27(5-6): pp.95-141.
DOI: 10.1016/s0927-796x(00)00010-3
Google Scholar
[9]
Kang, S., Recent progress in Pb-free solders and soldering technologies. JOM, 2001. 53(6): pp.16-16.
DOI: 10.1007/s11837-001-0096-6
Google Scholar
[10]
Hansen, M., K. Anderko, Constitution of Binary Alloys, 1958, McGraw-Hill, New York.
Google Scholar
[11]
Glazer, J., Metallurgy of low temperature Pb-free solders for electronic assembly. . Int Mater Rev, 1995. 40(2): pp.65-93.
DOI: 10.1179/imr.1995.40.2.65
Google Scholar
[12]
Lihua, Q., et al., Growth behavior of intermetallic compounds on Sn-3. 5 Ag-0. 5 Cu/Cu (Ni) interface under thermal-shearing cycling condition. Rare Metal Mat Eng, 2007. 36(2): p.241.
DOI: 10.1109/icept.2005.1564724
Google Scholar
[13]
Song-bai, X., 1, CHEN Yan~ 2, LV Xiao-chun~ 2, LIAO Yong-ping~ 2 (1. Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. Harbin Welding Institute, Harbin 150080, China); Effect of cerium on wettability and mechanical properties of soldered joints for Sn-Ag-Cu lead free solder [J]. Transactions of The China Welding Institution, 2005. 10.
DOI: 10.30919/esee8c617
Google Scholar
[14]
Lin, K.L. and C.L. Shih, Microstructure and thermal behavior of Sn-Zn-Ag solders J Electron Maters, 2003. 32(12): pp.1496-1500.
DOI: 10.1007/s11664-003-0120-4
Google Scholar
[15]
Wang, H., et al., Research status and prospect of Sn¨CZn based lead-free solders. Welding & Joining, 2007: p.31¨C35.
Google Scholar
[16]
Wu, S., H. Kang, and P. Qu, Study of Sn-Zn lead-free solder by alloying. Electron. Process Technol, 2008. 29(2): p.66¨C70.
Google Scholar
[17]
Efzan, M.N.E., et al., Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate. J Alloy Compd, (2010).
Google Scholar
[18]
Zhou, J., Y. Sun, and F. Xue, Properties of low melting point Sn–Zn–Bi solders. J Alloy Compd, 2005. 397(1-2): pp.260-264.
DOI: 10.1016/j.jallcom.2004.12.052
Google Scholar
[19]
Islam, R.A., et al., Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectr J, 2006. 37(8): pp.705-713.
DOI: 10.1016/j.mejo.2005.12.010
Google Scholar
[20]
C. Key Chung, F.M., Fay Hua, Raiyo Aspandiar, An Assessment of Lead Free Solder (Sn3. 7Ag0. 8Cu) Wettability. Electronics Packaging Technology Conference(EPTC), (2002).
DOI: 10.1109/eptc.2002.1185587
Google Scholar
[21]
Wassink, K., ed. Soldering In electronics. ed. n. edition1989. pp.63-78.
Google Scholar
[22]
Mayappan, R. and Z.A. Ahmad, Temperature and Flux Effect on Contact Angles and Intermetallic between Sn-8Zn-3Bi Lead-free Solder and Cu Substrate. Sains Malaysiana, 2009. 38(3): pp.395-400.
DOI: 10.1016/j.matpr.2018.06.072
Google Scholar
[23]
Loomans, M., et al., Investigation of multi-component lead-free solders. J Electron Mater, 1994. 23(8): pp.741-746.
Google Scholar
[24]
Yamaguchi, A. and T. Fukushima, Soldering alloy, cream solder and soldering method, 1999, Google Patents.
Google Scholar
[25]
Bradley, E., C.A. Handwerker, and J. Bath, Lead-free electronics: iNEMI projects lead to successful manufacturing2007: Wiley-IEEE Press.
DOI: 10.1002/9780470171479
Google Scholar
[26]
Moser, Z., et al., Database of Lead-Free Soldering Materials. Institute of Metallurgy and Materials Science Polish Academy of Science, OREKOP, Kraków, (2007).
Google Scholar
[27]
Nalagatla, D.R., Influence of Surface Roughness of Copper Substrate on Wetting Behavior of Molten Solder Alloys. (2007).
Google Scholar
[28]
Frear, D.R., et al., The mechanics of solder alloy interconnects1994: Kluwer Academic Pub.
Google Scholar
[29]
Guo, F., et al., Effects of reflow on wettability, microstructure and mechanical properties in lead-free solders. J Electron Maters, 2000. 29(10): pp.1241-1248.
DOI: 10.1007/s11664-000-0019-2
Google Scholar
[30]
Kattner, U.R., Phase diagrams for lead-free solder alloys. JOM, 2002. 54(12): pp.45-51.
DOI: 10.1007/bf02709189
Google Scholar
[31]
Suganuma, K., Lead-free soldering in electronics: science, technology and environmental impact2003: CRC.
Google Scholar
[32]
Islam, M. and Y. Chan. Wetting and Interfacial reactions of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder. 2005. IEEE.
DOI: 10.1109/agec.2005.1452341
Google Scholar
[33]
Mayappan, R. and Z.A. Ahmad, Temperature and Flux Effect on Contact Angles and Intermetallic between Sn-8Zn-3Bi Lead-free Solder and Cu Substrate. Sains Malaysiana, 2009. 38(3): pp.395-400.
DOI: 10.1016/j.matpr.2018.06.072
Google Scholar
[34]
Yu, D., H. Xie, and L. Wang, Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate. J Alloy Compd, 2004. 385(1): pp.119-125.
DOI: 10.1016/j.jallcom.2004.04.129
Google Scholar
[35]
Mayappan, R., Study On The Wetting Properties, Interfacial Reactions And Mechanical Properties Of Sn-Zn And Sn-Zn-Bi Solders On Copper Metallization [TK7870. R165 2007 f rb]. (2007).
Google Scholar
[36]
Shang, J. and D. Yao, Effect of interface roughness on fatigue crack growth in Sn-Pb solder joints. J Electron Packaging, 1996. 118: p.170.
DOI: 10.1115/1.2792148
Google Scholar
[37]
Frear, D., The mechanical behavior of interconnect materials for electronic packaging. JOM, 1996. 48(5): pp.49-53.
DOI: 10.1007/bf03222944
Google Scholar
[38]
Suganuma, K. and K.S. Kim, Sn–Zn low temperature solder. . J Mater Sci-Mater El, 2007. 18(1): pp.121-127.
DOI: 10.1007/s10854-006-9018-2
Google Scholar