[1]
H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear, 238 (2000) 131–137.
DOI: 10.1016/s0043-1648(99)00359-2
Google Scholar
[2]
M.J. Tan, X.J. Zhu, Microstructure evolution of CP titanium during high temperature deformation, Archives of Materials Science and Engineering, 28 (2007) 5-11.
Google Scholar
[3]
H.Y. Yu, Z. B. Cai, Z. R. Zhou, M. H. Zhu, Fretting behavior of cortical bone against titanium and its alloy, Wear, 259 (2005) 910–918.
DOI: 10.1016/j.wear.2005.01.037
Google Scholar
[4]
Y. Fu, A.W. Batchelor, Laser nitriding of pure titanium with Ni, Cr for improved wear performance, Wear, 214 (1998) 83-90.
DOI: 10.1016/s0043-1648(97)00204-4
Google Scholar
[5]
K. Hamada, M. Kon, T. Hanawa, K. Yokoyama, Y. Miyamoto, K. Asaoka, Hydrothermal modification of titanium surface in calcium solutions, Biomaterials, 23 (2002) 2265–2272.
DOI: 10.1016/s0142-9612(01)00361-1
Google Scholar
[6]
Y. Luo, G. Ge, Fretting wear behavior of nitrogen ion implanted titanium alloys in bovine serum lubrication, Tribology International, 42 (2009) 1373–1379.
DOI: 10.1016/j.triboint.2009.04.009
Google Scholar
[7]
M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, B. Radak, Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm, Applied Surface Science, 253 (2006) 2551–2556.
DOI: 10.1016/j.apsusc.2006.05.024
Google Scholar
[8]
A. Bloyce, P. H. Morton, T. Bell, Surface Engineering of Titanium and Titanium Alloys, ASM Handbook, 5 (1994) 2232-2233.
Google Scholar
[9]
Information on http: /www. supraalloys. com/medical-titanium. php.
Google Scholar
[10]
X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering, R 47 (2004) 49–121.
DOI: 10.1016/j.mser.2004.11.001
Google Scholar
[11]
X. Liu, R.W.Y. Poon, S.C.H. Kwok, P.K. Chu, C. Ding, Plasma surface modification of titanium for hard tissue replacements, Surface & Coatings Technology, 186 (2004) 227–233.
DOI: 10.1016/j.surfcoat.2004.02.045
Google Scholar
[12]
Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys, Applied Surface Science, 242 (2005) 177–184.
DOI: 10.1016/j.apsusc.2004.08.011
Google Scholar
[13]
N. Ali, H. Samekto, M. I. Ghazali, M. Ridha, Surface Modification of Pure Titanium by Nitrogen Ion Implantation at Different Beam Energy and Dose, Key Engineering Materials, 462-463 (2011) 750-755.
DOI: 10.4028/www.scientific.net/kem.462-463.750
Google Scholar
[14]
J. Jagielski, A. Piatkowska, P. Aubert, L. Thome, A. Turos, A.A. Kader, Ion implantation for surface modification of biomaterials, Surface & Coatings Technology, 200 (2006) 6355–6361.
DOI: 10.1016/j.surfcoat.2005.11.005
Google Scholar
[15]
A. Miklaszewski, M.U. Jurczyk, K. Jurczyk, M. Jurczyk, Plasma surface modification of titanium by TiB precipitation for biomedical applications, Surface & Coatings Technology, 206 (2011) 330–337.
DOI: 10.1016/j.surfcoat.2011.07.027
Google Scholar
[16]
Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys, Applied Surface Science, 242 (2005) 177–184.
DOI: 10.1016/j.apsusc.2004.08.011
Google Scholar
[17]
Y.Z. Kim, T. Konno, T. Murakami, T. Narushima, C. Ouchi, Surface Hardening Treatment for Titanium Materials Using Ar-5%CO Gas in Combination with Post Heat Treatment under Vacuum, Materials Transactions, 50 (2009) 2763-2771.
DOI: 10.2320/matertrans.ma200911
Google Scholar
[18]
A. Shenhar, I. Gotman, E.Y. Gutmanas, P. Ducheyne, Surface modification of titanium alloy orthopaedic implants via novel powder immersion reaction assisted coating nitriding method, Materials Science and Engineering, A268 (1999) 40–46.
DOI: 10.1016/s0921-5093(99)00111-2
Google Scholar
[19]
T. Bell, Y. Sun, A. Suhadi, Environmental and technical aspects of plasma nitrocarburizing. Vacuum, 59 (2000) 14–23.
DOI: 10.1016/s0042-207x(00)00250-5
Google Scholar
[20]
N. Krishnaraj, P.B. Srinivasan, K.J.L. Iyer, S. Sundaresan, Optimization of compound layer thickness for wear resistance of Nitrocarburized H11 steel, Wear, 215 (1998) 123-130.
DOI: 10.1016/s0043-1648(97)00276-7
Google Scholar
[21]
M. Karakan, A. Alsaran, A. Celik, Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel, Materials and Design, 25 (2004) 349–353.
DOI: 10.1016/j.matdes.2003.10.017
Google Scholar
[22]
W.D. Callister, Materials Science and Engineering: An Introduction 7ed, John Wiley and Son, New York, (2007).
Google Scholar