The Influence of Plasma Nitrocarburizing Process Temperature to Commercially Pure Titanium Surface Hardness

Article Preview

Abstract:

Commercially pure (cp) titanium is a relative soft metal and easily broken on friction-wear applications. To improve the hardness of the surface while maintaining the original properties, plasma nitrocarburizing process has been conducted. The effects of the treatment in different temperatures to the surface harness are then studied. In this study, cp titanium plasma nitrocarburizing process is conducted at different temperatures with different process time, i.e. at 350 °C for 3, 4, and 5 hours, and at 450 °C for 2, 3, and 4 hours respectively. Hardness tests are then performed on each specimen by using Micro Vickers Hardness Tester. The hardness values for the plasma specimens nitrocarburizing processes at temperature of 350 °C for process duration of 3 hours, 4 hours, and 5 hours are 74.16 HV, 92.25 HV and 94.41 HV, respectively, while for processes at temperature of 450 °C, the hardness values are 103.70 HV, 121.31 HV, and 126.17 HV for process duration of 2 hours, 3 hours, and 4 hours respectively. Hardness value of specimens which are resulted from the plasma nitrocarburizing process at temperature of 450 °C is higher compared with specimens that are processed at temperature of 350 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

700-704

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear, 238 (2000) 131–137.

DOI: 10.1016/s0043-1648(99)00359-2

Google Scholar

[2] M.J. Tan, X.J. Zhu, Microstructure evolution of CP titanium during high temperature deformation, Archives of Materials Science and Engineering, 28 (2007) 5-11.

Google Scholar

[3] H.Y. Yu, Z. B. Cai, Z. R. Zhou, M. H. Zhu, Fretting behavior of cortical bone against titanium and its alloy, Wear, 259 (2005) 910–918.

DOI: 10.1016/j.wear.2005.01.037

Google Scholar

[4] Y. Fu, A.W. Batchelor, Laser nitriding of pure titanium with Ni, Cr for improved wear performance, Wear, 214 (1998) 83-90.

DOI: 10.1016/s0043-1648(97)00204-4

Google Scholar

[5] K. Hamada, M. Kon, T. Hanawa, K. Yokoyama, Y. Miyamoto, K. Asaoka, Hydrothermal modification of titanium surface in calcium solutions, Biomaterials, 23 (2002) 2265–2272.

DOI: 10.1016/s0142-9612(01)00361-1

Google Scholar

[6] Y. Luo, G. Ge, Fretting wear behavior of nitrogen ion implanted titanium alloys in bovine serum lubrication, Tribology International, 42 (2009) 1373–1379.

DOI: 10.1016/j.triboint.2009.04.009

Google Scholar

[7] M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, B. Radak, Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm, Applied Surface Science, 253 (2006) 2551–2556.

DOI: 10.1016/j.apsusc.2006.05.024

Google Scholar

[8] A. Bloyce, P. H. Morton, T. Bell, Surface Engineering of Titanium and Titanium Alloys, ASM Handbook, 5 (1994) 2232-2233.

Google Scholar

[9] Information on http: /www. supraalloys. com/medical-titanium. php.

Google Scholar

[10] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering, R 47 (2004) 49–121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[11] X. Liu, R.W.Y. Poon, S.C.H. Kwok, P.K. Chu, C. Ding, Plasma surface modification of titanium for hard tissue replacements, Surface & Coatings Technology, 186 (2004) 227–233.

DOI: 10.1016/j.surfcoat.2004.02.045

Google Scholar

[12] Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys, Applied Surface Science, 242 (2005) 177–184.

DOI: 10.1016/j.apsusc.2004.08.011

Google Scholar

[13] N. Ali, H. Samekto, M. I. Ghazali, M. Ridha, Surface Modification of Pure Titanium by Nitrogen Ion Implantation at Different Beam Energy and Dose, Key Engineering Materials, 462-463 (2011) 750-755.

DOI: 10.4028/www.scientific.net/kem.462-463.750

Google Scholar

[14] J. Jagielski, A. Piatkowska, P. Aubert, L. Thome, A. Turos, A.A. Kader, Ion implantation for surface modification of biomaterials, Surface & Coatings Technology, 200 (2006) 6355–6361.

DOI: 10.1016/j.surfcoat.2005.11.005

Google Scholar

[15] A. Miklaszewski, M.U. Jurczyk, K. Jurczyk, M. Jurczyk, Plasma surface modification of titanium by TiB precipitation for biomedical applications, Surface & Coatings Technology, 206 (2011) 330–337.

DOI: 10.1016/j.surfcoat.2011.07.027

Google Scholar

[16] Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys, Applied Surface Science, 242 (2005) 177–184.

DOI: 10.1016/j.apsusc.2004.08.011

Google Scholar

[17] Y.Z. Kim, T. Konno, T. Murakami, T. Narushima, C. Ouchi, Surface Hardening Treatment for Titanium Materials Using Ar-5%CO Gas in Combination with Post Heat Treatment under Vacuum, Materials Transactions, 50 (2009) 2763-2771.

DOI: 10.2320/matertrans.ma200911

Google Scholar

[18] A. Shenhar, I. Gotman, E.Y. Gutmanas, P. Ducheyne, Surface modification of titanium alloy orthopaedic implants via novel powder immersion reaction assisted coating nitriding method, Materials Science and Engineering, A268 (1999) 40–46.

DOI: 10.1016/s0921-5093(99)00111-2

Google Scholar

[19] T. Bell, Y. Sun, A. Suhadi, Environmental and technical aspects of plasma nitrocarburizing. Vacuum, 59 (2000) 14–23.

DOI: 10.1016/s0042-207x(00)00250-5

Google Scholar

[20] N. Krishnaraj, P.B. Srinivasan, K.J.L. Iyer, S. Sundaresan, Optimization of compound layer thickness for wear resistance of Nitrocarburized H11 steel, Wear, 215 (1998) 123-130.

DOI: 10.1016/s0043-1648(97)00276-7

Google Scholar

[21] M. Karakan, A. Alsaran, A. Celik, Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel, Materials and Design, 25 (2004) 349–353.

DOI: 10.1016/j.matdes.2003.10.017

Google Scholar

[22] W.D. Callister, Materials Science and Engineering: An Introduction 7ed, John Wiley and Son, New York, (2007).

Google Scholar