[1]
H. Kurtaran, M. Buyuk, A. Eskandarian, 2003 Ballistics Impact Simulation of GT Model Vehicle Door Using Finite Element Method, Theor. and Appl. Frac. Mech. 40 (2003) 113–121.
DOI: 10.1016/s0167-8442(03)00039-9
Google Scholar
[2]
T. Saburi, S. Kubota, M. Yoshida, Y. Wada, Y. Ogata, Experimental impact study using an explosive driven projectile accelerator and numerical simulation, Int. J. Impact Eng. 35 (2008) 1764–1769.
DOI: 10.1016/j.ijimpeng.2008.07.012
Google Scholar
[3]
J. Li, X.J. Li, Z. Zhao, Y.X. Ou, D.A. Jiang, Simulation on projectile with high rotating speed penetrating into the moving vehicular door, Theor. Appl. Frac. Mech. 47 (2007) 113–119.
DOI: 10.1016/j.tafmec.2006.11.003
Google Scholar
[4]
G. Gopinath, J.Q. Zheng, R.C. Batra, Effect of matrix on ballistic performance of soft body armour, Compos. Struct. 94 (2012) 2690–2696.
DOI: 10.1016/j.compstruct.2012.03.038
Google Scholar
[5]
T. Børvik, S. Dey, A.H. Clausen, Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, Int. J. Impact Eng. 36 (2009) 948–964.
DOI: 10.1016/j.ijimpeng.2008.12.003
Google Scholar
[6]
S. Deya, T. Børvik, O.S. Hopperstad, M. Langseth, On the influence of constitutive relation in projectile impact of steel plates, Int. J. Impact Eng. 34 (2007) 464–486.
DOI: 10.1016/j.ijimpeng.2005.10.003
Google Scholar
[7]
S. Dey, T. Børvik, O.S. Hopperstad, M. Langseth, On the influence of fracture criterion in projectile impact of steel plates, Comp. Mat. Sc. 38 (2006) 176–191.
DOI: 10.1016/j.commatsci.2006.02.003
Google Scholar
[8]
T. Borvik, L. Olovsson, S. Dey, M. Langseth, Normal and oblique impact of small arms bullet on AA6082-T4 Aluminium Protective Plates, Int. J. Impact Eng. 38(2011) 577 – 589.
DOI: 10.1016/j.ijimpeng.2011.02.001
Google Scholar
[9]
T-L. Teng, Y-A. Chu, F-A. Chang, B-C. Shen, D-S. Cheng, Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact, Comp. Mat. Sc. 42 (2008) 90–99.
DOI: 10.1016/j.commatsci.2007.06.013
Google Scholar
[10]
M. Grujicic, B. Pandurangan, B. d'Entremont, , The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armour, Mat. and Design 41 (2012) 380–393.
DOI: 10.1016/j.matdes.2012.05.023
Google Scholar
[11]
H. S. Hiermaier, M. Boljen, I. Rohr, High Speed Impact – Test and Simulation, Proc. European LS DYNA Conf., (2009).
Google Scholar
[12]
V.B.C. Tan, T.W. Ching, Computational simulation of fabric armour subjected to ballistic impacts, Int. J. Impact Eng. 32 (2006) 1737–175.
DOI: 10.1016/j.ijimpeng.2005.05.006
Google Scholar
[13]
E. Sevkat, Experimental and numerical approaches for estimating ballistic limit velocities of woven composite beams, Int. J. Impact Eng. 45 (2012) 16-27.
DOI: 10.1016/j.ijimpeng.2012.01.007
Google Scholar
[14]
E. M. Parsons, T. Weerasooriya, S. Sarva, S. Socrate, Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations, J. Mech. Phys. of Solids 58 (2010) 1995–(2021).
DOI: 10.1016/j.jmps.2010.05.006
Google Scholar
[15]
K. Krishnan, S. Sockalingam, S. Bansal, S.D. Rajan, Numerical simulation of ceramic composite armour subjected to ballistic impact, Compos.: Part B 41 (2010) 583–593.
DOI: 10.1016/j.compositesb.2010.10.001
Google Scholar
[16]
A. Tasdemirci, G. Tunusoglu, M. Güden, The effect of the interlayer on the ballistic performance of ceramic /composite armours: Experimental and numerical study, Int. J. Impact Eng. 44 (2012) 1-9.
DOI: 10.1016/j.ijimpeng.2011.12.005
Google Scholar
[17]
S. Feli, M.R. Asgari, Finite element simulation of ceramic/composite armour under ballistic impact, Compos.: Part B 42 (2011) 771–780.
DOI: 10.1016/j.compositesb.2011.01.024
Google Scholar
[18]
D. Bürger, A. R de Faria, S. F.M. de Almeida, F. C.L. de Melo, M. V. Donadon, Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours, Int. J. Impact Eng. 43 (2012) 63-77.
DOI: 10.1016/j.ijimpeng.2011.12.001
Google Scholar
[19]
E. Sevkat, B. Liaw, F. Delale, B. B. Raju, A combined experimental and numerical approach to study ballistic impact response of S2-glass fiber/toughened epoxy composite beams, Compos. Sc. and Tech. 69 (2009) 965–982.
DOI: 10.1016/j.compscitech.2009.01.001
Google Scholar
[20]
M.A.G. Silva, C. Cisma-siu, C.G. Chiorean, Numerical simulation of ballistic impact on composite laminates, Int. J. Impact Eng. 31 (2005) 289–306.
DOI: 10.1016/j.ijimpeng.2004.01.011
Google Scholar
[21]
C-F. Yen, A ballistic material model for continuous-fiber reinforced composites, Int. J. Impact Eng. 46 (2012) 11-22.
Google Scholar
[22]
A.H. Sheikh, P.H. Bull, J.A. Kepler, Behaviour of multiple composite plates subjected to ballistic impact, Compos. Sc. and Tech. 69 (2009) 704–710.
DOI: 10.1016/j.compscitech.2008.03.022
Google Scholar
[23]
B. A. Gama, J. W. Gillespie Jr., Finite element modeling of impact, damage evolution and penetration of thick-section composites., Int. J. Impact Eng. 38 (2011) 181-197.
DOI: 10.1016/j.ijimpeng.2010.11.001
Google Scholar
[24]
C.Y. Tham, V.B.C. Tan, H.P. Lee, Ballistic impact of a KEVLARs helmet: Experiment and simulations , Int. J. Impact Eng. 35 (2008) 304–318.
DOI: 10.1016/j.ijimpeng.2007.03.008
Google Scholar
[25]
L.B. Tan, K. M. Tse, H.P. Lee, V. B. C. Tan, S. P. Lim, Performance of advanced combat helmet with different interior cushioning system in ballistic impact: experiment and finite element simulation, Int. J. Impact Eng., (2012).
DOI: 10.1016/j.ijimpeng.2012.06.003
Google Scholar