Computational Issues in the Simulation of High Speed Ballistic Impact: A Review

Article Preview

Abstract:

This paper presents a review of recent developments of nonlinear constitutive material models for the applications in high speed ballistic impact of projectile into several types of targets. The objective is to comprehend some numerical approaches that have been proposed and used in the technical literatures especially regarding bullet-target interaction. Attention is given on the application of several types of computational constitutive models and simulations used to represent the projectile characteristic, ballistic penetration, failure modes in target and deformation pattern. This paper serves as a concise source to identify future direction in the area of computational mechanics of high speed collisions and provides brief literatures for those interested in conducting research into the topic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

762-767

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kurtaran, M. Buyuk, A. Eskandarian, 2003 Ballistics Impact Simulation of GT Model Vehicle Door Using Finite Element Method, Theor. and Appl. Frac. Mech. 40 (2003) 113–121.

DOI: 10.1016/s0167-8442(03)00039-9

Google Scholar

[2] T. Saburi, S. Kubota, M. Yoshida, Y. Wada, Y. Ogata, Experimental impact study using an explosive driven projectile accelerator and numerical simulation, Int. J. Impact Eng. 35 (2008) 1764–1769.

DOI: 10.1016/j.ijimpeng.2008.07.012

Google Scholar

[3] J. Li, X.J. Li, Z. Zhao, Y.X. Ou, D.A. Jiang, Simulation on projectile with high rotating speed penetrating into the moving vehicular door, Theor. Appl. Frac. Mech. 47 (2007) 113–119.

DOI: 10.1016/j.tafmec.2006.11.003

Google Scholar

[4] G. Gopinath, J.Q. Zheng, R.C. Batra, Effect of matrix on ballistic performance of soft body armour, Compos. Struct. 94 (2012) 2690–2696.

DOI: 10.1016/j.compstruct.2012.03.038

Google Scholar

[5] T. Børvik, S. Dey, A.H. Clausen, Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, Int. J. Impact Eng. 36 (2009) 948–964.

DOI: 10.1016/j.ijimpeng.2008.12.003

Google Scholar

[6] S. Deya, T. Børvik, O.S. Hopperstad, M. Langseth, On the influence of constitutive relation in projectile impact of steel plates, Int. J. Impact Eng. 34 (2007) 464–486.

DOI: 10.1016/j.ijimpeng.2005.10.003

Google Scholar

[7] S. Dey, T. Børvik, O.S. Hopperstad, M. Langseth, On the influence of fracture criterion in projectile impact of steel plates, Comp. Mat. Sc. 38 (2006) 176–191.

DOI: 10.1016/j.commatsci.2006.02.003

Google Scholar

[8] T. Borvik, L. Olovsson, S. Dey, M. Langseth, Normal and oblique impact of small arms bullet on AA6082-T4 Aluminium Protective Plates, Int. J. Impact Eng. 38(2011) 577 – 589.

DOI: 10.1016/j.ijimpeng.2011.02.001

Google Scholar

[9] T-L. Teng, Y-A. Chu, F-A. Chang, B-C. Shen, D-S. Cheng, Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact, Comp. Mat. Sc. 42 (2008) 90–99.

DOI: 10.1016/j.commatsci.2007.06.013

Google Scholar

[10] M. Grujicic, B. Pandurangan, B. d'Entremont, , The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armour, Mat. and Design 41 (2012) 380–393.

DOI: 10.1016/j.matdes.2012.05.023

Google Scholar

[11] H. S. Hiermaier, M. Boljen, I. Rohr, High Speed Impact – Test and Simulation, Proc. European LS DYNA Conf., (2009).

Google Scholar

[12] V.B.C. Tan, T.W. Ching, Computational simulation of fabric armour subjected to ballistic impacts, Int. J. Impact Eng. 32 (2006) 1737–175.

DOI: 10.1016/j.ijimpeng.2005.05.006

Google Scholar

[13] E. Sevkat, Experimental and numerical approaches for estimating ballistic limit velocities of woven composite beams, Int. J. Impact Eng. 45 (2012) 16-27.

DOI: 10.1016/j.ijimpeng.2012.01.007

Google Scholar

[14] E. M. Parsons, T. Weerasooriya, S. Sarva, S. Socrate, Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations, J. Mech. Phys. of Solids 58 (2010) 1995–(2021).

DOI: 10.1016/j.jmps.2010.05.006

Google Scholar

[15] K. Krishnan, S. Sockalingam, S. Bansal, S.D. Rajan, Numerical simulation of ceramic composite armour subjected to ballistic impact, Compos.: Part B 41 (2010) 583–593.

DOI: 10.1016/j.compositesb.2010.10.001

Google Scholar

[16] A. Tasdemirci, G. Tunusoglu, M. Güden, The effect of the interlayer on the ballistic performance of ceramic /composite armours: Experimental and numerical study, Int. J. Impact Eng. 44 (2012) 1-9.

DOI: 10.1016/j.ijimpeng.2011.12.005

Google Scholar

[17] S. Feli, M.R. Asgari, Finite element simulation of ceramic/composite armour under ballistic impact, Compos.: Part B 42 (2011) 771–780.

DOI: 10.1016/j.compositesb.2011.01.024

Google Scholar

[18] D. Bürger, A. R de Faria, S. F.M. de Almeida, F. C.L. de Melo, M. V. Donadon, Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours, Int. J. Impact Eng. 43 (2012) 63-77.

DOI: 10.1016/j.ijimpeng.2011.12.001

Google Scholar

[19] E. Sevkat, B. Liaw, F. Delale, B. B. Raju, A combined experimental and numerical approach to study ballistic impact response of S2-glass fiber/toughened epoxy composite beams, Compos. Sc. and Tech. 69 (2009) 965–982.

DOI: 10.1016/j.compscitech.2009.01.001

Google Scholar

[20] M.A.G. Silva, C. Cisma-siu, C.G. Chiorean, Numerical simulation of ballistic impact on composite laminates, Int. J. Impact Eng. 31 (2005) 289–306.

DOI: 10.1016/j.ijimpeng.2004.01.011

Google Scholar

[21] C-F. Yen, A ballistic material model for continuous-fiber reinforced composites, Int. J. Impact Eng. 46 (2012) 11-22.

Google Scholar

[22] A.H. Sheikh, P.H. Bull, J.A. Kepler, Behaviour of multiple composite plates subjected to ballistic impact, Compos. Sc. and Tech. 69 (2009) 704–710.

DOI: 10.1016/j.compscitech.2008.03.022

Google Scholar

[23] B. A. Gama, J. W. Gillespie Jr., Finite element modeling of impact, damage evolution and penetration of thick-section composites., Int. J. Impact Eng. 38 (2011) 181-197.

DOI: 10.1016/j.ijimpeng.2010.11.001

Google Scholar

[24] C.Y. Tham, V.B.C. Tan, H.P. Lee, Ballistic impact of a KEVLARs helmet: Experiment and simulations , Int. J. Impact Eng. 35 (2008) 304–318.

DOI: 10.1016/j.ijimpeng.2007.03.008

Google Scholar

[25] L.B. Tan, K. M. Tse, H.P. Lee, V. B. C. Tan, S. P. Lim, Performance of advanced combat helmet with different interior cushioning system in ballistic impact: experiment and finite element simulation, Int. J. Impact Eng., (2012).

DOI: 10.1016/j.ijimpeng.2012.06.003

Google Scholar