Component Characteristic of Lignite Semi-Coke Hydrogasification Residue

Article Preview

Abstract:

The residue of Inner Mongolia lignite semi-coke by different final temperature hydrogenation system methane of CO2 gasification reactivity is studied by means of thermo gravimetric and X-Ray Diffraction method. The results show that, with the rise of hydrogasification temperature, the residue aromaticity fa increase, the residual carbon microcrystalline tend to graphitization, CO2 reactivity decrease and residue CO2 reaction temperature raise. The final hydrogenation temperature residue CO2 gasification reaction conversion rate curves similar and curve to temperature increase in the direction of movement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-156

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yongfa Zhang, Xiaokuo Ding, Tiankai Zhang. A kind of coke oven gas system methane process, China patent,patent number:201210159464.8(2012).

Google Scholar

[2] Russell N V, Gibbins J R, Williamson J. Structural ordering in high temperature coal chars and the effect on reactivity. Fuel, Vol.78 (1999)pp.803-807.

DOI: 10.1016/s0016-2361(98)00210-5

Google Scholar

[3] Zhongsuo Liu, Qi Wang, Zongshu Zou. Reaction mechanism of carbon gasification in CO2 under non-isothermal conditions, Therm Anal Calorim, Vol.104 (2011) pp.1091-1096.

DOI: 10.1007/s10973-010-1238-2

Google Scholar

[4] Gorbatchev V M. A solution of the exponential integral in the non-isothermal kinetics for linear heating, Journal of Thermal Analysis, Vol.8 (1975). pp.349-350.

DOI: 10.1007/bf01904012

Google Scholar

[5] Flynn J H. Thermal analysis kinetics-past, present and future, Thermochim Acta, Vol.203 (1992)pp.519-526.

DOI: 10.1016/0040-6031(92)85222-h

Google Scholar

[6] Kajitani S, Hara S, Matsuda H.Gasification rate analysis of coal char with a pressurized drop tube furnace, Fuel. Vol.81(2002)pp.539-546.

DOI: 10.1016/s0016-2361(01)00149-1

Google Scholar

[7] Zhang W D, Zhang Y F. The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH4-CO2 reforming, Frontiers of Chemical Engineering in China, Vol.4(2010)pp.147-152

DOI: 10.1007/s11705-009-0242-1

Google Scholar

[8] Weidong Zhang, Yongfa Zhang, Meng Zhang, et al. The characteristic of CH4-CO2 reforming catalyzed by carbonaceous catalyst Fourth International conference on clean coal technologies (CCT2009). Dresden, Germany, 18-21 May, ( 2009).

Google Scholar

[9] Yongfa Zhang, Yaling Sun. study on the microcrystal structure of carbonated briquette made from anthracite powder, Coal Conversion, Vol.33(2010)pp.19-22.

Google Scholar

[10] Russell N V, Gibbins J R, Williamson J. Structural ordering in high temperature coal chars and the effect on reactivity, Fuel, Vol.78(7)(1999) pp.803-807.

DOI: 10.1016/s0016-2361(98)00210-5

Google Scholar

[11] Alonso M J G, Borrego A G, Alvarez D. Pyrolysis behaviour of pulverised coals at different temperatures, Fuel, Vol.78( 13) (1999) pp.1501-1513.

DOI: 10.1016/s0016-2361(99)00081-2

Google Scholar

[12] Zolin A, Jensen A D, Jensena P A. Experimental study of char thermal deactivation, Fuel, Vol.81( 8) (2002) pp.1065-1075.

DOI: 10.1016/s0016-2361(02)00009-1

Google Scholar