Studies on Rapid Pyrolysis Characteristics of Huainan Coal

Article Preview

Abstract:

This paper aims to investigate the rapid pyrolysis characteristics of Huainan coal using a tube furnace. Influence of temperature on yields and compounds of tar and char are tested. The result shows that aliphatic chains break gradually with increasing pyrolysis temperature. This leads an increase in aromaticity. Maximum tar yields were obtained at about 550°C, the char yields decreased and the gas yields increased with the pyrolysis temperature. The tar was isolated to aliphatic hydrocarbon aromatic hydrocarbon, non hydrocarbon and asphaltene, and characterized by chromatography-mass spectrometry (GC/MS). The main content of tar include normal alkanes from C16-C30, two-,three- and four-ring aromatic hydrocarbons and alkyl-substituted hydroaromatic derivatives of polycyclic, phenols, indoles, quinines esters and others compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-35

Citation:

Online since:

April 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Matsuoka, K.; Ma, Z. X.; Akiho, H.; Zhang, Z.G.; Tomita. A.; Fletcher. T. H.; Marek. A.; Wo´jtowicz, M. A.; Niksa. S. Energy Fuels. 2003, 17, 984–990.

DOI: 10.1021/ef020298+

Google Scholar

[2] Liu, Q. R.; Hu, H. Q.; Zhou, Q.; Zhu, S. W.; Chen, G. H. Fuel. 2004, 83, 713–718.

Google Scholar

[3] Zhou, Q.; Hu, H. Q.; Liu, Q. R.; Zhu, S. W.; Zhao, R. Energy Fuels. 2005, 19,892–897.

Google Scholar

[4] Takagi, H.; Isoda, T.; Kusakabe, K.; Morooka, S. Energy Fuels. 2000, 14, 646–653.

DOI: 10.1021/ef990215y

Google Scholar

[5] Yunpeng Zhao; Haoquan Hu; Lijun Jin; Bo Wu; Shengwei Zhu. Energy Fuels. 2009, 23, 870–875.

Google Scholar

[6] Tyler, R. J. Fuel 1980, 59, 218.

Google Scholar

[7] Katheklakis, I. E.; Shi-Lin. L.; Bartle, K. D.; Kandivoti. R. Fuel. 1990, 69, 172.

Google Scholar

[8] Cloke, M.; Lester, E.; Leney, M. Fuel. 1999, 78, 1719–1728.

Google Scholar

[9] Lazaro, M. J.; Molinerb, R.; Suelves, I.; Herod, A. A.; Kandiyoti, R. Fuel. 2001, 80, 179–194.

Google Scholar

[10] Ferdous, D.; Dalai, A. K.; Bej, S. K.; Thring, R. W. Energy Fuels 2002, 16, 1405–1412.

DOI: 10.1021/ef0200323

Google Scholar

[11] Li, W.; Lu, H. L.; Chen, H. K.; Li, B. Q. Fuel. 2005, 84, 353–357.

Google Scholar

[12] Ralph J. Tyler. Fuel. 1979, 58, 680-686.

Google Scholar

[13] Chen, H. K.; Li, B. Q.; Zhang, B. J. Fuel. 1999, 78, 713–719.

Google Scholar

[14] F. E. Ndaji, I. M. Butterfield, K. M. Thomas, Fuel. 1997, 76, 169.

Google Scholar

[15] S. Namura, K. M. Thomas, Fuel. 1998, 77, 829.

Google Scholar

[16] P. R. Solomon, M. A. Serio, G. V. Despande, E. Kroo, Energy Fuels,1990, 4, 42.

Google Scholar

[17] P. R. Solomon, D. G. Hamblen, M. A. Serio, Fuel.1990, 69, 754.

Google Scholar