A Theoretical Study of the O (3P) + HCONH2 Reaction

Article Preview

Abstract:

The triplet potential surface of the O (3P) + HCONH2 reaction has been investigated at the CCSD (T)//B3LYP/6-311G (d,p) level. DFT calculations show that the reaction occurs dominantly via the H - abstraction rather than the O- addition mechanism on the triplet potential surface. The product of OH and CONH2 should be the major product, which obtained by a direct dissociation of the adduct im6 without an exit barrier.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

933-936

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Miller, C. T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 15 (1989) 287-338.

Google Scholar

[2] Naomi L. Haworth, John C. Mackie, George B. Bacskay, An ab initio quantum chemical and kinetic study of the NNH+ O reaction potential energy surface: How important is this route to NO in combustion? J. Phys. Chem. A 107 (2003) 6792-6803.

DOI: 10.1021/jp034421p

Google Scholar

[3] J. W. Bozzelli, A. M. Dean, O + NNH: A possible new route for NOX formation in flames, Int. J. Chem. Kinet. 27 (1995) 1097-1109.

DOI: 10.1002/kin.550271107

Google Scholar

[4] A. A. Konnov, De Ruyck, Temperature-dependent rate constant for the reaction NNH+ O→ NH+ NO. J. Combust. Flame 125 (2001) 1258-1264.

DOI: 10.1016/s0010-2180(01)00250-4

Google Scholar

[5] K. H. Becker, R. Kurtenbach, F. Schmidt, P. Wiesen, Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame 120 (2000) 570-577

DOI: 10.1016/s0010-2180(99)00108-x

Google Scholar

[6] J. D. Adamson, S. K. Farhat, C. L. Morter, etc. The Reaction of NH2 with O, J. Phys. Chem. 98 (1994) 5665-5669.

Google Scholar

[7] M. Gonzalez, R. Valero, R. Sayos, Ab initio ground potential energy surface (3A") for the O(3P)+N2O reaction and kinetics study, J. Chem. Phys. 115 (2001) 2540 -2549.

DOI: 10.1063/1.1381010

Google Scholar

[8] J. V. Michael, K. P. Lim, Rate constants for the N2O reaction system: Thermal decomposition of N2O; N+NO→N2+O; and implications for O+N2→NO+N, J. Chem. Phys. 97 (1992) 3228 -3234.

Google Scholar

[9] J.W. Sutherland, P. M. Patterson, R. B. Klemm, Flash photolysis-shock tube kinetic investigation of the reaction of oxygen (3P) atoms with ammonia, J. Phys. Chem. 94 (1990) 2471 -2475.

DOI: 10.1021/j100369a049

Google Scholar

[10] Fujii, N.; Chiba, K.; Uchida, S.; Miyama, H. The rate constants of the elementary reactions of NH3 with O and OH, Chem. Phys. Lett. 127(1986) 141-144.

DOI: 10.1016/s0009-2614(86)80243-3

Google Scholar

[11] R. S. Zhu, M. C. Lin, Ab Initio Study on the Oxidation of NCN by O (3P): Prediction of the Total Rate Constant and Product Branching Ratios, J. Phys. Chem. A 111 (2007) 6766 -6771.

DOI: 10.1021/jp068991b

Google Scholar

[12] T. J. Dillon, M. A. Blitz, D. E. Heard, Determination of the Rate Coefficients for the Reactions IO+ NO2+ M (Air)→ IONO2+ M and O (3P)+ NO2→ O2+ NO Using Laser-Induced Fluorescence Spectroscopy, J. Phys. Chem. A 110(2006) 6995 – 7002.

DOI: 10.1021/jp057048p

Google Scholar

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01, Gaussian, Inc.,Wallingford, CT, 2004.

Google Scholar

[14] C. Gonzalez, H. B. Schlegel, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem. 94 (1990) 5523-5527.

DOI: 10.1021/j100377a021

Google Scholar

[15] 20. M. W. Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data. 9 (1998) 1-1951.

Google Scholar