[1]
J. A. Miller, C. T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 15 (1989) 287-338.
Google Scholar
[2]
Naomi L. Haworth, John C. Mackie, George B. Bacskay, An ab initio quantum chemical and kinetic study of the NNH+ O reaction potential energy surface: How important is this route to NO in combustion? J. Phys. Chem. A 107 (2003) 6792-6803.
DOI: 10.1021/jp034421p
Google Scholar
[3]
J. W. Bozzelli, A. M. Dean, O + NNH: A possible new route for NOX formation in flames, Int. J. Chem. Kinet. 27 (1995) 1097-1109.
DOI: 10.1002/kin.550271107
Google Scholar
[4]
A. A. Konnov, De Ruyck, Temperature-dependent rate constant for the reaction NNH+ O→ NH+ NO. J. Combust. Flame 125 (2001) 1258-1264.
DOI: 10.1016/s0010-2180(01)00250-4
Google Scholar
[5]
K. H. Becker, R. Kurtenbach, F. Schmidt, P. Wiesen, Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame 120 (2000) 570-577
DOI: 10.1016/s0010-2180(99)00108-x
Google Scholar
[6]
J. D. Adamson, S. K. Farhat, C. L. Morter, etc. The Reaction of NH2 with O, J. Phys. Chem. 98 (1994) 5665-5669.
Google Scholar
[7]
M. Gonzalez, R. Valero, R. Sayos, Ab initio ground potential energy surface (3A") for the O(3P)+N2O reaction and kinetics study, J. Chem. Phys. 115 (2001) 2540 -2549.
DOI: 10.1063/1.1381010
Google Scholar
[8]
J. V. Michael, K. P. Lim, Rate constants for the N2O reaction system: Thermal decomposition of N2O; N+NO→N2+O; and implications for O+N2→NO+N, J. Chem. Phys. 97 (1992) 3228 -3234.
Google Scholar
[9]
J.W. Sutherland, P. M. Patterson, R. B. Klemm, Flash photolysis-shock tube kinetic investigation of the reaction of oxygen (3P) atoms with ammonia, J. Phys. Chem. 94 (1990) 2471 -2475.
DOI: 10.1021/j100369a049
Google Scholar
[10]
Fujii, N.; Chiba, K.; Uchida, S.; Miyama, H. The rate constants of the elementary reactions of NH3 with O and OH, Chem. Phys. Lett. 127(1986) 141-144.
DOI: 10.1016/s0009-2614(86)80243-3
Google Scholar
[11]
R. S. Zhu, M. C. Lin, Ab Initio Study on the Oxidation of NCN by O (3P): Prediction of the Total Rate Constant and Product Branching Ratios, J. Phys. Chem. A 111 (2007) 6766 -6771.
DOI: 10.1021/jp068991b
Google Scholar
[12]
T. J. Dillon, M. A. Blitz, D. E. Heard, Determination of the Rate Coefficients for the Reactions IO+ NO2+ M (Air)→ IONO2+ M and O (3P)+ NO2→ O2+ NO Using Laser-Induced Fluorescence Spectroscopy, J. Phys. Chem. A 110(2006) 6995 – 7002.
DOI: 10.1021/jp057048p
Google Scholar
[13]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01, Gaussian, Inc.,Wallingford, CT, 2004.
Google Scholar
[14]
C. Gonzalez, H. B. Schlegel, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem. 94 (1990) 5523-5527.
DOI: 10.1021/j100377a021
Google Scholar
[15]
20. M. W. Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data. 9 (1998) 1-1951.
Google Scholar