Mobile Inspection Robot

Article Preview

Abstract:

In this paper, the design of a tracked in-pipe inspection mobile robot with a flexible drive positioning system is presented. The robot would be able to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically with cross section greater than 200 mm. The paper presents a complete design process of a virtual prototype, with usage of CAD/CAE software. Mathematical descriptions of the robot kinematics and dynamics that aim on development of a control system are presented. Laboratory tests of the utilized tracks are included. Performed tests proved conformity of the design with stated requirements, therefore a prototype will be manufactured basing on the project.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-392

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Burdziński: Teoria ruchu pojazdu gąsienicowego, Wydawnictwa Komunikacji i Łączności, Warszawa (1972)

Google Scholar

[2] A.W. Chodkowski: Badania modelowe pojazdów gąsienicowych i kołowych, Wydawnictwa Komunikacji i Łączności, Warszawa (1982)

Google Scholar

[3] A.W. Chodkowski: Konstrukcja i obliczanie szybkobieżnych pojazdów gąsienicowych, Wydawnictwa Komunikacji i Łączności, Warszawa (1990)

Google Scholar

[4] H.R. Choi, S. Roh: In-pipe Robot with Active Steering Capability for Moving Inside of Pipelines, edited by Maki K. Habib, Bioinspiration and Robotics Walking and Climbing Robots, InTech (2007)

DOI: 10.5772/5512

Google Scholar

[5] Information on http://www.cuesinc.com/UltraShortyIII.html

Google Scholar

[6] H. Dajniak: Ciągniki teoria ruchu i konstruowanie, Wydawnictwa Komunikacji i Łączności, Warszawa (1985)

Google Scholar

[7] M. Giergiel, T. Buratowski, P. Małka, K. Kurc, P. Kohut, K. Majkut: The Project of Tank Inspection Robot, Key Engineering Materials, vol. 518 (2012), pp.375-383

DOI: 10.4028/www.scientific.net/kem.518.375

Google Scholar

[8] M.H. Horodnica, I. Doroftei, E. Mignon, A. Preumont: A simple architecture for in-pipe inspection robots. Int. Colloquium on Mobile and Autonomous Systems, 10 Years of the Fraunhofer IFF (2012)

Google Scholar

[9] Information on http://www.hydropulsion.com/robotic-crawler-systems/vertical-crawler/vertical_crawler.pdf

Google Scholar

[10] Information on http://www.inuktun.com/crawler-vehicles

Google Scholar

[11] Information on http://www.ipek.at/fileadmin/FILES/downloads/brochures/iPEK_rovver_web_en.pdf

Google Scholar

[12] A. Kuwada, K. Tsujino, K. Suzumori, T. Kanda: Intelligent Actuators Realizing Snake-like Small Robot for Pipe Inspection, International Symposium on Micro-NanoMechatronics and Human Science (2006), pp.1-6

DOI: 10.1109/mhs.2006.320333

Google Scholar

[13] Information on http://www.redzone.com/products/solo%C2%AE

Google Scholar

[14] K. Tadakuma, R. Tadakuma, K.Nagatani, K. Yoshida, Ming Aigo, M. Shimojo, K.Iagnemma: Basic running test of the cylindrical tracked vehicle with sideways mobility, IROS 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2009), pp.1679-1684

DOI: 10.1109/iros.2009.5354064

Google Scholar

[15] M. Trojnacki: Modelowanie i symulacja ruchu mobilnego robota trzykołowego z napędem na przednie koła z uwzględnieniem poślizgu kół jezdnych, Modelowanie Inżynierskie Tom 10, Nr 41, Gliwice (2011), pp.411-420

Google Scholar

[16] Y. Wang, J. Zhang: Autonomous Air Duct Cleaning Robot System, MWSCAS '06. 49th IEEE International Midwest Symposium on Circuits and Systems, vol.1 (2006), pp.510-513

DOI: 10.1109/mwscas.2006.382110

Google Scholar

[17] W. Żylski: Kinematyka i dynamika mobilnych robotów kołowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (1996)

Google Scholar