Study of Electrical and Aging Properties on the La-Doped Aurivillius Phase Ferroelectrics BaBi4Ti4O15

Article Preview

Abstract:

Aurivillius phase ferroelectrics Ba(Bi1−xLax)4Ti4O15(x=0-0.05) (BBiLxT) was synthesized by a modified high-temperature solid-phase route.The structure, the dielectric, the ferroelectric and the aging properties were investigated systematically. With the La3+ doping, the room temperature relative permittivity of the samples is increased, and dielectric loss is decreased. For the BBiLxT phase, only a weak variation with respect to the F2mm space group can be suggested from single crystal X-ray diffraction. The microstructure confirms the samples have a well-proportioned grain size and a higher density. The substitution also results in a marked improvement in the remnant polarization. The doping of La3+ in BBiLxT ceramics increased the room temperature relative permittivity aging properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kim, M. Miyayama, H. Yanagida, J. Ceram. Soc. Jpn. 102(1995) 315.

Google Scholar

[2] I. Yi, M. Miyayama, Trans. Mater. Res. Soc. Jpn. 20 (1996) 660.

Google Scholar

[3] S.M. Huang, C.D. Feng, M. Gu, Y.C. Li, J. Alloys Compd. 472 (2009) 262.

Google Scholar

[4] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Joe., J. Nat. (London) 401 (1999) 682.

Google Scholar

[5] M.L. Zhao, Q.Z. Wu, C.L. Wang, J.L. Zhang, Z.G. Gai, C.M. Wang, J. Alloys Compd. 476 (2009) 393.

Google Scholar

[6] M.A. Zurbuchen, G. Asayama, D.G. Schlom, S.K. Streiffer, Phys. Rev. Lett. 88 (2002) 107601.

Google Scholar

[7] H. Yan, H. Zang, M.J. Reece, X. Dong, Appl. Phys. Lett. 87 (2005) 082911–082913.

Google Scholar

[8] H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, Appl. Phys. Lett. 91 (2007) 182909–182911.

Google Scholar

[9] E.C. Subbarao, J. Phys. Chem. Solids 23 (1962) 665.

Google Scholar

[10] Y. Park, M. Miyayama, T. Kudo, J. Ceram . Soc. Jpn. 107 (1999) 413.

Google Scholar

[11] S. Kumar,K. B. R. Varma, J. Phys. D: Appl. Phys. 42 (2009) 075405.

Google Scholar

[12] Sunil Kumar, K. B. R. Varma, Adv. Sci. Lett. 3 (2010) 20.

Google Scholar

[13] V. B. Santos, J.-C. M'Peko, M. Mir, V. R. Mastelaro, A.C. Hernandes, J. Eur. Ceram. Soc. 29 (2009) 751–756.

Google Scholar

[14] X. B. Chen, R. Hui, J. Zhu, W. P. Lu, X. Y. Mao, J. Appl. Phys. 96 (2004) 5697–5700.

Google Scholar

[15] H. Sun, X. B. Chen, J. Zhu, J. H. He, Y.F. Qian, H. Fang, J. Sol–Gel Sci. Technol. 43(2007) 125–129.

Google Scholar

[16] A. Z. Simoes, C. S. Riccardi, F. Moura, A. Ries, N.L.A. Junior, M.A. Zaghete, B. Stojanovic, E. Longo, J.A. Varela, Mater. Lett. 58 (2004) 2842–2847.

DOI: 10.1016/j.matlet.2004.04.025

Google Scholar

[17] CARL. K, HAERDTL. K. H. Electrical after-effects in Pb(Ti, Zr)O3 ceramics [J]. Ferroelectrics, 1978, 17(3): 473-486.

DOI: 10.1080/00150197808236770

Google Scholar

[18] ROBELS U, ARLT. G. Domain wall clamping in ferroelectrics by orientation of defects [J]. J Appl Phys, 1993, 73(4): 3454-3459.

DOI: 10.1063/1.352948

Google Scholar

[19] CAO W, RANDALLCA. "Grain size and domain size relations in bulk ceramic ferroelectric materials." [J]. J Phys Chem Solids, 1996, 57(10): 1499-1505.

DOI: 10.1016/0022-3697(96)00019-4

Google Scholar