[1]
Z.H. Chen, Q.Yang, H. Li, X.H.Li, L.F. Wang and Shik Chi Tsang:Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature, Journal of Catalysis, Vol.276 (2010), p.56–65.
DOI: 10.1016/j.jcat.2010.08.016
Google Scholar
[2]
B X Shen, B.B Guo, Z L Shi, P F Wu and Liang C:Low temperature SCR of NO in flue gas on CeO2/AC, Chemical Industry and Progress, Vol. 35 (2007) No.11, p.25–128.
Google Scholar
[3]
Z.H. Zheng, H.Tong, Z.Q. Tong, Y.Huang and J. Luo: Catalytic reduction of NO over Mn-V-Ce/TiO2 catalyst at low reaction temperature. Journal of Fuel Chemistry and Technology,Vol.38 (2010) No.3, p.343– 351.
Google Scholar
[4]
Z.X. Zhang, M.X. Chen and W.F. Shangguan: Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst. Catalysis Communications, Vol.10 (2009), p.1330–1333.
DOI: 10.1016/j.catcom.2009.02.015
Google Scholar
[5]
S. Parres-Esclapez, M.J. Illan-Gomez, C. Salinas-Martinez de Lecea and A. Bueno-Lopez. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Applied Catalysis B: Environmental, Vol. 96 (2010), p.370–378.
DOI: 10.1016/j.apcatb.2010.02.034
Google Scholar
[6]
Masahide Shimokawabe, Akihiro Kuwana, Shogo Oku, Kazuki Yoshida and Masahiko Arai: SCR of NO by DME over Al2O3 based catalysts: Influence of noble metals and Ba additive on low-temperature activity Catalysis Today, Vol.164 (2011), p.480–483.
DOI: 10.1016/j.cattod.2010.11.008
Google Scholar
[7]
P. Forzatti, Appl. Catal. A: Gen. Vol. 222 (2001), p.221.
Google Scholar
[8]
Joseph M. Fedeyko, Bin Chen and Hai-Ying Chen: Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts. Catalysis Today, Vol. 151 (2010), p.231–236
DOI: 10.1016/j.cattod.2009.12.015
Google Scholar
[9]
J. Ochonskaa, D. McClymont, P.J. Jodłowski , A. Knapik, B. Gil, W. Makowski and W. Łasocha, A. Kołodziejb, S.T. Kolaczkowski, J. Łojewska. Copper exchanged ultrastable zeolite Y – A catalyst for NH3-SCR of NOx from stationary biogas engines. Catalysis Today, Vol. 191 (2012), p.6–11
DOI: 10.1016/j.cattod.2012.06.010
Google Scholar
[10]
Y.S. Cheng, Christine Lambert, Do Heui Kim, Ja Hun Kwak, Sung June Cho, and Charles H.F. Peden: The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts. Catalysis Today, Vol. 151 (2010), p.266–270
DOI: 10.1016/j.cattod.2010.01.013
Google Scholar
[11]
J.H. Li, H.Z. Chang, L. Ma, J.M. Hao and RalphT Yang: Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, Vol. 175 (2011), pp.147-156.
DOI: 10.1016/j.cattod.2011.03.034
Google Scholar
[12]
D. Pena, B. Uphade, E. Reddy, P. Smirniotis and J. Phys. Chem. B, Vol. 108 (2004), p.9927.
Google Scholar
[13]
R.Moreno-Tost, E.R. Castellon, A.Jimenez-Lopez and J.Mol. Catal. A: Chem, Vol. 248 (2006), p.126.
Google Scholar
[14]
J. Li, J. Chen, R. Ke, C. Luo, J. Hao, Catal. Communicate. Vol. 8 (2007), p.1896.
Google Scholar
[15]
K. Li, X.L. Tang, H.H.Yi, P. Ning, D.J. Kang and Chi Wang: Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst. Chemical Engineering Journal, Vol. 192 (2012), p.99–104.
DOI: 10.1016/j.cej.2012.03.087
Google Scholar
[16]
Muhammad Faisal Irfan, Jeong Hoi Goo and Sang Done Kim: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Applied Catalysis B: Environmental, Vol. 78 (2008), p.267–274.
DOI: 10.1016/j.apcatb.2007.09.029
Google Scholar
[17]
Boningari Thirupathi and Panagiotis G. Smirniotis: Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, Vol. 288 (2012), p.74–83
DOI: 10.1016/j.jcat.2012.01.003
Google Scholar
[18]
T. Valdés-Solís, G. Marbán, A.B. Fuertes, Appl. Catal. B: Environ, Vol 46 (2003), p.261.
Google Scholar
[19]
T. Valdés-Solís, G. Marbán, A.B. Fuertes, Ind. Eng. Chem. Res, Vol. 43 (2004), p.349.
Google Scholar
[20]
P. Lu, C. Li, G. Zeng, L. He, D. Peng, H. Cui, S. Li and Y. Zhai: Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria, Appl. Catal. B: Environ, Vol. 96 (2010), p.157–161.
DOI: 10.1016/j.apcatb.2010.02.014
Google Scholar
[21]
Q. Li, H. Yang, F. Qiu and X. Zhang: Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J. Hazard. Mater, Vol. 192 (2011, p.915–921.
DOI: 10.1016/j.jhazmat.2011.05.101
Google Scholar
[22]
X. Tang, J. Hao, H. Yi and J. Li: Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts, Catal. Today, Vol. 126 (2007), p.406–411.
DOI: 10.1016/j.cattod.2007.06.013
Google Scholar
[23]
L.H. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.H. Luo and D.Q. Ye: Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization. Chemical Engineering Journal, Vol. 192 (2012), p.232–241
DOI: 10.1016/j.cej.2012.04.012
Google Scholar
[24]
J.H Li, JJ. Chen, R. Ke, C.K. Luo and J.M. Hao: Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications, Vol. 8 (2007), p.1896–1900.
DOI: 10.1016/j.catcom.2007.03.007
Google Scholar
[25]
J.L. Xie, D. Fang, F. He, J.F. Chen, Z.B. Fu and X.L. Chen: Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catalysis Communications, Vol. 28 (2012), p.77–81.
DOI: 10.1016/j.catcom.2012.08.022
Google Scholar
[26]
Jeong Huy Ko, Sung Hoon Parkb, Jong-Ki Jeon, Seung-Soo Kim, Sang Chai Kim, Ji Man Kim, Daejun Chang and Young-Kwon Park: Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, Vol. 185 (2012), p.290– 295.
DOI: 10.1016/j.cattod.2011.08.007
Google Scholar
[27]
]Pullur Anil Kumar, Maddigapu Pratap Reddy, Lee Kyung Ju, Bae Hyun-Sook and Ha Heon Phil. Low temperature propylene SCR of NO by copper alumina catalyst[J]. Journal of Molecular Catalysis A: Chemical, Vol. 291 (2008), p.66–74.
DOI: 10.1016/j.molcata.2008.05.006
Google Scholar
[28]
B.Q. Jiang, Y. Liu and Z.B.Wu: Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods .Journal of Hazardous Materials, Vol. 162 (2009). p.1249–1254.
DOI: 10.1016/j.jhazmat.2008.06.013
Google Scholar
[29]
L.S. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.C. Luo and D.Q. Ye: Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization. Chemical Engineering Journal, Vol. 192 (2012), p.232–241.
DOI: 10.1016/j.cej.2012.04.012
Google Scholar
[30]
J. Pasel, P. KaÈûner, B. Montanari, M. Gazzano, A. Vaccari, W. Makowski, T. Lojewski and Roman Dziembaj, H. Papp. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, Vol. 18 (1998), pp.199-213.
DOI: 10.1016/s0926-3373(98)00033-2
Google Scholar
[31]
L.L. Zhu, B.C. Huanga and W.H. Wang: Low temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers [J], Catalysis Communications, 2010.
DOI: 10.1016/j.catcom.2010.10.028
Google Scholar
[32]
Padmanabha Reddy Ettireddy a, Neeraja Ettireddy a, Sergey Mamedov.et. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J]. Applied Catalysis B: Environmental, Vol. 76 (2007), pp.123-134.
DOI: 10.1016/j.apcatb.2007.05.010
Google Scholar
[33]
Phil Won Seo, Sung Pill Cho and Sung Ho Hong. The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region [J].Applied Catalysis A: General, Vol. 380(2010), pp.21-27.
DOI: 10.1016/j.apcata.2010.03.016
Google Scholar
[34]
Z.P. Zhu, Z.Y. Liu, H.X. Niu et al. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J], Catal, Vol.197 (2001) No 1, pp.6-16.
DOI: 10.1006/jcat.2000.3052
Google Scholar
[35]
H.Z Chang , J.H Li , J.Y , L. Chen , Y. Dai , Hamidreza Arandiyan, J.Y. Xu and J.M. Hao. Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: Effects of SO2 and H2 regeneration Catalysis Today, Vol. xxx (2012), p. xxx– xxx.
DOI: 10.1016/j.cattod.2012.03.027
Google Scholar
[36]
R.B. Jin, Y.Liu, Z.B. Wu, H.Q and T.T. Gu: Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catalysis Today, Vol. 153 (2010), p.84–89.
DOI: 10.1016/j.cattod.2010.01.039
Google Scholar
[37]
S.C. Ma, X.Jin and Y.X. Sun: The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control [J].Thermal power generation, Vol. 39 (2010) No.8.
Google Scholar
[38]
S.W. Chen, X.L. Yan, Y. Wang, J.Q. Chen, D.H. Pan, J.H. Ma and R.F. Li: Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta C. analysis Today, Vol. 175 (2011), p.12– 17. (In Chinese)
DOI: 10.1016/j.cattod.2011.05.024
Google Scholar
[39]
Sandra Mosconi, Ileana D.Lick, Alfredo Carrascull, Marta I.Ponzi, Esther and N.Ponzi: Catalytic combustion of diesel soot: Deactivation by SO2 of copper and potassium nitrate catalysts supported on alumina [J]. Catalysis Communications, Vol. 8(2007), p.1755–1758.
DOI: 10.1016/j.catcom.2007.01.026
Google Scholar
[40]
Z G Huang, Z P Zhu, Z Y Liu, et al. Formation and reaction of ammonium sulfate salts o n V2O5 / AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures [J].Journal of Catalysis, Vol. 214 (2003), pp.213-219.
DOI: 10.1016/s0021-9517(02)00157-4
Google Scholar
[41]
Y.Yao, S.L. Zhang, Q.Zhong, X.x Liu: Low-temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes. J Fuel Chem Technol,Vol.39 (2011) No.9, pp.694-701.
DOI: 10.1016/s1872-5813(11)60042-x
Google Scholar
[42]
P.P Hu, Z.W. Huang, W.M. Hua, X. Gu and X.F. Tang: Effect of H2O on catalytic performance of manganese oxides in NO reduction by NH3. Applied Catalysis A: General, Vol. 437– 438 (2012), p.139– 148.
DOI: 10.1016/j.apcata.2012.06.025
Google Scholar
[43]
P. Li, Q.Y Liu and Z.Y. Liu: Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chemical Engineering Journal, Vol.181– 182 (2012), p.169– 173.
DOI: 10.1016/j.cej.2011.11.051
Google Scholar
[44]
X.S Du, X.G, L.W.i-wen Cui, Y.C. Fu, Z.Y. Luo and K.F. Cen: Investigation of the effect of Cu addition on the SO2-resistance of a Ce-Ti oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, Vol. 92 (2012), p.49–55.
DOI: 10.1016/j.fuel.2011.08.014
Google Scholar
[45]
C.J.G. van der Grift, A.F. Woldhuis and O.L. Maaskant: Shell DENOX system for low temperature NOx removal Catalysis Today, Vol. 27 (1996), pp.23-27.
DOI: 10.1016/0920-5861(95)00204-9
Google Scholar
[46]
B.X Shen, C.Liang and B.B Guo: Present status and perspectives of low—temperature SCR of flue gas denitrification technology [J]. Electric power environmental protection, Vol.22 (2006) No.6, pp.37-39.
Google Scholar