Research Progress of Low-Temperature SCR DeNOx Catalysts

Article Preview

Abstract:

Low-temperature SCR DeNOx process is considered to be a potential technique to meet the stringent environment regulations. It can avoid the problem such as blocking and eroding often generated in medium temperature, polluting and poisoning caused by alkali elements and so on. In this paper, a review of DeNOx catalysts about noble metals, molecular sieve, carbon-based and metal oxides catalyst was presented. The affecting factors of the low-temperature activation were comprehensively expounded, such as precursor introduction method, preparation method, supporter pretreatment and catalyst structure. Then mechanism of SO2 poisoning and effect of active compositions were analyzed. The dual effect of SO2 on the activity of low temperature catalysts mainly results from the formation of certain sulfur-containing species on catalyst surface. Water vapor decreased the number of available active sites attributed to competitive adsorption among H2O and other reactants. Moreover, the co-existence of H2O and SO2 resulted in the decrease of activity obviously. So the way to improve resistance of SO2 and H2O poisoning was summed up. Finally, future research and development directions in the developing low-temperature SCR for removal of NOx technology were proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

629-638

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.H. Chen, Q.Yang, H. Li, X.H.Li, L.F. Wang and Shik Chi Tsang:Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature, Journal of Catalysis, Vol.276 (2010), p.56–65.

DOI: 10.1016/j.jcat.2010.08.016

Google Scholar

[2] B X Shen, B.B Guo, Z L Shi, P F Wu and Liang C:Low temperature SCR of NO in flue gas on CeO2/AC, Chemical Industry and Progress, Vol. 35 (2007) No.11, p.25–128.

Google Scholar

[3] Z.H. Zheng, H.Tong, Z.Q. Tong, Y.Huang and J. Luo: Catalytic reduction of NO over Mn-V-Ce/TiO2 catalyst at low reaction temperature. Journal of Fuel Chemistry and Technology,Vol.38 (2010) No.3, p.343– 351.

Google Scholar

[4] Z.X. Zhang, M.X. Chen and W.F. Shangguan: Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst. Catalysis Communications, Vol.10 (2009), p.1330–1333.

DOI: 10.1016/j.catcom.2009.02.015

Google Scholar

[5] S. Parres-Esclapez, M.J. Illan-Gomez, C. Salinas-Martinez de Lecea and A. Bueno-Lopez. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Applied Catalysis B: Environmental, Vol. 96 (2010), p.370–378.

DOI: 10.1016/j.apcatb.2010.02.034

Google Scholar

[6] Masahide Shimokawabe, Akihiro Kuwana, Shogo Oku, Kazuki Yoshida and Masahiko Arai: SCR of NO by DME over Al2O3 based catalysts: Influence of noble metals and Ba additive on low-temperature activity Catalysis Today, Vol.164 (2011), p.480–483.

DOI: 10.1016/j.cattod.2010.11.008

Google Scholar

[7] P. Forzatti, Appl. Catal. A: Gen. Vol. 222 (2001), p.221.

Google Scholar

[8] Joseph M. Fedeyko, Bin Chen and Hai-Ying Chen: Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts. Catalysis Today, Vol. 151 (2010), p.231–236

DOI: 10.1016/j.cattod.2009.12.015

Google Scholar

[9] J. Ochonskaa, D. McClymont, P.J. Jodłowski , A. Knapik, B. Gil, W. Makowski and W. Łasocha, A. Kołodziejb, S.T. Kolaczkowski, J. Łojewska. Copper exchanged ultrastable zeolite Y – A catalyst for NH3-SCR of NOx from stationary biogas engines. Catalysis Today, Vol. 191 (2012), p.6–11

DOI: 10.1016/j.cattod.2012.06.010

Google Scholar

[10] Y.S. Cheng, Christine Lambert, Do Heui Kim, Ja Hun Kwak, Sung June Cho, and Charles H.F. Peden: The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts. Catalysis Today, Vol. 151 (2010), p.266–270

DOI: 10.1016/j.cattod.2010.01.013

Google Scholar

[11] J.H. Li, H.Z. Chang, L. Ma, J.M. Hao and RalphT Yang: Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, Vol. 175 (2011), pp.147-156.

DOI: 10.1016/j.cattod.2011.03.034

Google Scholar

[12] D. Pena, B. Uphade, E. Reddy, P. Smirniotis and J. Phys. Chem. B, Vol. 108 (2004), p.9927.

Google Scholar

[13] R.Moreno-Tost, E.R. Castellon, A.Jimenez-Lopez and J.Mol. Catal. A: Chem, Vol. 248 (2006), p.126.

Google Scholar

[14] J. Li, J. Chen, R. Ke, C. Luo, J. Hao, Catal. Communicate. Vol. 8 (2007), p.1896.

Google Scholar

[15] K. Li, X.L. Tang, H.H.Yi, P. Ning, D.J. Kang and Chi Wang: Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst. Chemical Engineering Journal, Vol. 192 (2012), p.99–104.

DOI: 10.1016/j.cej.2012.03.087

Google Scholar

[16] Muhammad Faisal Irfan, Jeong Hoi Goo and Sang Done Kim: Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Applied Catalysis B: Environmental, Vol. 78 (2008), p.267–274.

DOI: 10.1016/j.apcatb.2007.09.029

Google Scholar

[17] Boningari Thirupathi and Panagiotis G. Smirniotis: Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, Vol. 288 (2012), p.74–83

DOI: 10.1016/j.jcat.2012.01.003

Google Scholar

[18] T. Valdés-Solís, G. Marbán, A.B. Fuertes, Appl. Catal. B: Environ, Vol 46 (2003), p.261.

Google Scholar

[19] T. Valdés-Solís, G. Marbán, A.B. Fuertes, Ind. Eng. Chem. Res, Vol. 43 (2004), p.349.

Google Scholar

[20] P. Lu, C. Li, G. Zeng, L. He, D. Peng, H. Cui, S. Li and Y. Zhai: Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria, Appl. Catal. B: Environ, Vol. 96 (2010), p.157–161.

DOI: 10.1016/j.apcatb.2010.02.014

Google Scholar

[21] Q. Li, H. Yang, F. Qiu and X. Zhang: Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J. Hazard. Mater, Vol. 192 (2011, p.915–921.

DOI: 10.1016/j.jhazmat.2011.05.101

Google Scholar

[22] X. Tang, J. Hao, H. Yi and J. Li: Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts, Catal. Today, Vol. 126 (2007), p.406–411.

DOI: 10.1016/j.cattod.2007.06.013

Google Scholar

[23] L.H. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.H. Luo and D.Q. Ye: Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization. Chemical Engineering Journal, Vol. 192 (2012), p.232–241

DOI: 10.1016/j.cej.2012.04.012

Google Scholar

[24] J.H Li, JJ. Chen, R. Ke, C.K. Luo and J.M. Hao: Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications, Vol. 8 (2007), p.1896–1900.

DOI: 10.1016/j.catcom.2007.03.007

Google Scholar

[25] J.L. Xie, D. Fang, F. He, J.F. Chen, Z.B. Fu and X.L. Chen: Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catalysis Communications, Vol. 28 (2012), p.77–81.

DOI: 10.1016/j.catcom.2012.08.022

Google Scholar

[26] Jeong Huy Ko, Sung Hoon Parkb, Jong-Ki Jeon, Seung-Soo Kim, Sang Chai Kim, Ji Man Kim, Daejun Chang and Young-Kwon Park: Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, Vol. 185 (2012), p.290– 295.

DOI: 10.1016/j.cattod.2011.08.007

Google Scholar

[27] ]Pullur Anil Kumar, Maddigapu Pratap Reddy, Lee Kyung Ju, Bae Hyun-Sook and Ha Heon Phil. Low temperature propylene SCR of NO by copper alumina catalyst[J]. Journal of Molecular Catalysis A: Chemical, Vol. 291 (2008), p.66–74.

DOI: 10.1016/j.molcata.2008.05.006

Google Scholar

[28] B.Q. Jiang, Y. Liu and Z.B.Wu: Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods .Journal of Hazardous Materials, Vol. 162 (2009). p.1249–1254.

DOI: 10.1016/j.jhazmat.2008.06.013

Google Scholar

[29] L.S. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.C. Luo and D.Q. Ye: Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization. Chemical Engineering Journal, Vol. 192 (2012), p.232–241.

DOI: 10.1016/j.cej.2012.04.012

Google Scholar

[30] J. Pasel, P. KaÈûner, B. Montanari, M. Gazzano, A. Vaccari, W. Makowski, T. Lojewski and Roman Dziembaj, H. Papp. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, Vol. 18 (1998), pp.199-213.

DOI: 10.1016/s0926-3373(98)00033-2

Google Scholar

[31] L.L. Zhu, B.C. Huanga and W.H. Wang: Low temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers [J], Catalysis Communications, 2010.

DOI: 10.1016/j.catcom.2010.10.028

Google Scholar

[32] Padmanabha Reddy Ettireddy a, Neeraja Ettireddy a, Sergey Mamedov.et. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J]. Applied Catalysis B: Environmental, Vol. 76 (2007), pp.123-134.

DOI: 10.1016/j.apcatb.2007.05.010

Google Scholar

[33] Phil Won Seo, Sung Pill Cho and Sung Ho Hong. The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region [J].Applied Catalysis A: General, Vol. 380(2010), pp.21-27.

DOI: 10.1016/j.apcata.2010.03.016

Google Scholar

[34] Z.P. Zhu, Z.Y. Liu, H.X. Niu et al. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J], Catal, Vol.197 (2001) No 1, pp.6-16.

DOI: 10.1006/jcat.2000.3052

Google Scholar

[35] H.Z Chang , J.H Li , J.Y , L. Chen , Y. Dai , Hamidreza Arandiyan, J.Y. Xu and J.M. Hao. Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: Effects of SO2 and H2 regeneration Catalysis Today, Vol. xxx (2012), p. xxx– xxx.

DOI: 10.1016/j.cattod.2012.03.027

Google Scholar

[36] R.B. Jin, Y.Liu, Z.B. Wu, H.Q and T.T. Gu: Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catalysis Today, Vol. 153 (2010), p.84–89.

DOI: 10.1016/j.cattod.2010.01.039

Google Scholar

[37] S.C. Ma, X.Jin and Y.X. Sun: The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control [J].Thermal power generation, Vol. 39 (2010) No.8.

Google Scholar

[38] S.W. Chen, X.L. Yan, Y. Wang, J.Q. Chen, D.H. Pan, J.H. Ma and R.F. Li: Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta C. analysis Today, Vol. 175 (2011), p.12– 17. (In Chinese)

DOI: 10.1016/j.cattod.2011.05.024

Google Scholar

[39] Sandra Mosconi, Ileana D.Lick, Alfredo Carrascull, Marta I.Ponzi, Esther and N.Ponzi: Catalytic combustion of diesel soot: Deactivation by SO2 of copper and potassium nitrate catalysts supported on alumina [J]. Catalysis Communications, Vol. 8(2007), p.1755–1758.

DOI: 10.1016/j.catcom.2007.01.026

Google Scholar

[40] Z G Huang, Z P Zhu, Z Y Liu, et al. Formation and reaction of ammonium sulfate salts o n V2O5 / AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures [J].Journal of Catalysis, Vol. 214 (2003), pp.213-219.

DOI: 10.1016/s0021-9517(02)00157-4

Google Scholar

[41] Y.Yao, S.L. Zhang, Q.Zhong, X.x Liu: Low-temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes. J Fuel Chem Technol,Vol.39 (2011) No.9, pp.694-701.

DOI: 10.1016/s1872-5813(11)60042-x

Google Scholar

[42] P.P Hu, Z.W. Huang, W.M. Hua, X. Gu and X.F. Tang: Effect of H2O on catalytic performance of manganese oxides in NO reduction by NH3. Applied Catalysis A: General, Vol. 437– 438 (2012), p.139– 148.

DOI: 10.1016/j.apcata.2012.06.025

Google Scholar

[43] P. Li, Q.Y Liu and Z.Y. Liu: Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chemical Engineering Journal, Vol.181– 182 (2012), p.169– 173.

DOI: 10.1016/j.cej.2011.11.051

Google Scholar

[44] X.S Du, X.G, L.W.i-wen Cui, Y.C. Fu, Z.Y. Luo and K.F. Cen: Investigation of the effect of Cu addition on the SO2-resistance of a Ce-Ti oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, Vol. 92 (2012), p.49–55.

DOI: 10.1016/j.fuel.2011.08.014

Google Scholar

[45] C.J.G. van der Grift, A.F. Woldhuis and O.L. Maaskant: Shell DENOX system for low temperature NOx removal Catalysis Today, Vol. 27 (1996), pp.23-27.

DOI: 10.1016/0920-5861(95)00204-9

Google Scholar

[46] B.X Shen, C.Liang and B.B Guo: Present status and perspectives of low—temperature SCR of flue gas denitrification technology [J]. Electric power environmental protection, Vol.22 (2006) No.6, pp.37-39.

Google Scholar