[1]
V. Birman, A. Simonyan, Theory and applications of cylindrical sandwich shells with piezoelectric sensors and actuators. Smart materials and structures 3(1994) 391-396.
DOI: 10.1088/0964-1726/3/4/002
Google Scholar
[2]
J. Qiu, J. Tani, Vibration control of a cylindrical shell using distributed piezoelectric sensors and actuators. Proceedings of the second International symposium on intelligent material 1994 1003-1014.
DOI: 10.1109/aim.1997.652929
Google Scholar
[3]
V. R. Sonti, J. D. Jones, Curved piezoactuator model for active vibration control of cylindrical shell. AIAA Journal 34(1996) 1034-1040.
DOI: 10.2514/3.13184
Google Scholar
[4]
C. Y. Wang, R. Vaiciatis, Active control of vibrations and noise of double wall cylindrical shells. Journal of sound and vibration 216(1998) 865-888.
DOI: 10.1006/jsvi.1998.1740
Google Scholar
[5]
J. Callahan, H. Baruh, Modal sensing of circular cylinder shells using segmented piezoelectric elements. Smart materials and structures 8(1999) 125-135.
DOI: 10.1088/0964-1726/8/1/014
Google Scholar
[6]
A. K. Jha, D. J. Inman, Piezoelectric actuator and sensor models for an inflated toroidal shell. Mechanical Systems and Signal Processing 16(2002) 97-122.
DOI: 10.1006/mssp.2001.1442
Google Scholar
[7]
Q. Wang, K. M. Liew, Analysis of wave propagation in piezoelectric coupled cylinder affected by transverse shear and rotary inertia. International Journal of Solids and Structure 40(2003) 6653-6667.
DOI: 10.1016/s0020-7683(03)00422-0
Google Scholar
[8]
D. C. Sun, L.Y. Tong, Modal control of smart shells by optimized discretely distributed piezoelectric transducers. International Journal of Solids and Structures 38(2001), 3281-3299.
DOI: 10.1016/s0020-7683(00)00224-9
Google Scholar
[9]
W. Variyart, M. J. Brennan, An actuator for the n=2 circumferential mode of a pipe. Journal of sound and vibration 268(2003) 305-321.
DOI: 10.1016/s0022-460x(03)00253-0
Google Scholar
[10]
P. A. Nelson, A. R. D. Curtis, S. J. Elliott, A. J. Bullmore, The minimum power output on free field point sources and the active control of sound. Journal of sound and vibration 116(1987) 397-414.
DOI: 10.1016/s0022-460x(87)81373-1
Google Scholar
[11]
O. Bardou, P. Gardonio, S. J. Elliott, R. J. Pinnington, Active power minimization and power absorption in a plate with force and moment excitation. Journal of sound and vibration 208(1997) 111-151.
DOI: 10.1006/jsvi.1997.1183
Google Scholar
[12]
J. Lončarić, S. V. Tsynkov, Optimization of power in the problems of active control of sound. Mathematics and computers in simulation 65(2004) 323-335.
DOI: 10.1016/j.matcom.2004.01.005
Google Scholar
[13]
X. Pan, C. H. Hansen, Active control of vibration transmission in a cylindrical shell. Journal of sound and vibration 203(1997) 409-434.
DOI: 10.1006/jsvi.1996.9987
Google Scholar
[14]
M. J. Brennan, S. J. Elliott, R. J. Pinnington, Strategies for the active control of flexural vibration on a beam. Journal of sound and vibration 186(1995) 657-688.
DOI: 10.1006/jsvi.1995.0476
Google Scholar
[15]
B. J. Brévart, C. R. Fuller, Active control of coupled wave propagation in fluid-filled elastic cylindrical shells. Acoustical society of America 3(1994) 1467-1475.
DOI: 10.1121/1.408149
Google Scholar
[16]
H. P. Zhu, R. G. Xu, Active control method based on power flow. Noise and Vibration Control 5(1998) 21-28.
Google Scholar
[17]
M. B. Xu, G. Song, Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint. Journal of Sound and Vibration 278(2004) 307-326.
DOI: 10.1016/j.jsv.2003.10.029
Google Scholar