Sliding Mode H-Control with Stochastic Time Delay Systems

Article Preview

Abstract:

In this paper, we concerned the problem of sliding mode of-control with stochastic stabilization of uncertainty. Some sufficient conditions are derived for this class of robust feedback stabilization of time delay systems. The stochastic time delay systems may switch from one to one corresponds of linear filter, such that the dynamics of estimation error is guaranteed to be stochastically stable in mean square. Moreover, it is shown that for a class of special linear stochastic neutral systems, the H-sliding mode control design can be obtained by solving linear matrix inequalities (LMIs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1712-1718

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. H. Chen, W. X. Zheng, and Y. Shen: Delay-dependent stability and control of uncertain neutral systems with time delay, IEEE Trans. Automat. Contr., vol.54, pp.1660-1667, 2009.

DOI: 10.1109/tac.2009.2017981

Google Scholar

[2] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis: State space solutions to standard and control problems, IEEE Trans. Automat. Contr., vol.34, pp.831-847, 1989.

DOI: 10.1109/9.29425

Google Scholar

[3] E. Fridman: New Lyapunov-Karsovskii functionals for stability of linear retarded and neutral type systems, Syst. Control Lett., vol.43, pp.309-319, 2001.

DOI: 10.1016/s0167-6911(01)00114-1

Google Scholar

[4] M. S. Mahmoud: Robust control of linear neutral systems, Automatica, vol.36, pp.757-764, 2000.

DOI: 10.1016/s0005-1098(99)00159-4

Google Scholar

[5] Y. Niu, D.W.C. Ho, and X. Wang: Robust control for nonlinear stochastic systems: A sliding-mode approach , IEEE Trans. Automat. Contr., vol.53, pp.1695-1701, 2008.

DOI: 10.1109/tac.2008.929376

Google Scholar

[6] G. Bartolini and A. Ferrara, in: A simplified discontinuous control scheme for uncertain linear systems: an Input/Output approach. In; Proc.of the IEEE workshop in Variable Structere and Lyapunov Control of Uncertain Dynamical Systems, Sheffild, UK, pp.6-11. (1992)

Google Scholar

[7] X. Xu, P. Shi, Y. Chu, and Y. Zou, in: Robust stochastic stabilization and control of uncertain neutral stochastic time-delay systems, J.Math.Anal.Appl., vol.314, pp.1-16,2006.

DOI: 10.1016/j.jmaa.2005.03.088

Google Scholar

[8] Q. L. Han: Robust stability of uncertain delay-differential systems of neutral type, Automatica, vol.38, pp.719-723, 2002.

DOI: 10.1016/s0005-1098(01)00250-3

Google Scholar

[9] C. Yuan and X. Mao, in: Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica, vol. 40, p.343–354, 2004.

DOI: 10.1016/j.automatica.2003.10.012

Google Scholar

[10] Z. Wang, J. Lam, and X. Liu: Nonlinear filtering for state delayed systems with Markovian switching, IEEE Trans. Signal Process., vol. 51, no. 9, p.2321–2328, Sep. 2003.

DOI: 10.1109/tsp.2003.815373

Google Scholar

[11] M. S. Mahmoud and L. Xie, in: Stability and positive realness of time delay systems, J. Math. Anal. Appl., vol.239, pp.7-19, 1999.

Google Scholar

[12] Y. Xia and Y. Jia: Robust stability analysis for time-delay systems with polytopic uncertainties via parameter-dependent Lyapunov functionals, Int. J. Control, vol. 75, no. 6–7, p.1427–1434, 2002.

DOI: 10.1080/0020717021000023834

Google Scholar

[13] Y. Xia and Y. Jia, in: Robust control of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functionals, Syst. Control Lett., vol. 50, no. 3, p.183–193, 2003.

DOI: 10.1016/s0167-6911(03)00153-1

Google Scholar

[14] Y. Xia and Y. Jia: Robust sliding mode control of uncertain time-delay systems : An LMI approach, IEEE Trans. Autom. Control, vol. 48, no. 6, p.1986–1092, Jun. 2003.

DOI: 10.1109/tac.2003.812815

Google Scholar

[15] E. Fridman and U. Shaked, in: A descriptor system approach to control of linear time-delay systems, IEEE Trans. Automat. Contr., vol.47, pp.253-270, 2002.

DOI: 10.1109/9.983353

Google Scholar

[16] Y. Kuang, in: Delay Differential Equations with Applications in Population Dynamics, Boston, MA:Academic, 1993.

Google Scholar

[17] M. Wu, Y. He, and J. H. She: New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE Trans. Automat. Contr., vol.49, pp.2266-2271, 2004.

DOI: 10.1109/tac.2004.838484

Google Scholar

[18] L. Huang, X. Mao: SMC design for robust control of uncertain stochastic delay systems, Automatica, vol.46, pp.405-412, 2010.

DOI: 10.1016/j.automatica.2009.11.013

Google Scholar

[19] K. Boukas, in: Stabilization of stochastic nonlinear hybrid systems, Int. J. Innovative Comput., Inform. Control, vol. 1, no. 1, p.131–141, 2005.

Google Scholar

[20] S. Xu, J. Lam, and C. Yang, in: and positive-real control for linear neutral delay systems, IEEE Trans. Automat. Contr., vol.46, pp.1321-1326, 2001.

DOI: 10.1109/9.940943

Google Scholar

[21] E. Fridman and U. Shaked: Dealy-dependent stability and control: constant and time varying delays, Int. J. Control, vol.76, pp.48-60, 2003.

DOI: 10.1080/0020717021000049151

Google Scholar