[1]
W. H. Chen, W. X. Zheng, and Y. Shen: Delay-dependent stability and control of uncertain neutral systems with time delay, IEEE Trans. Automat. Contr., vol.54, pp.1660-1667, 2009.
DOI: 10.1109/tac.2009.2017981
Google Scholar
[2]
J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis: State space solutions to standard and control problems, IEEE Trans. Automat. Contr., vol.34, pp.831-847, 1989.
DOI: 10.1109/9.29425
Google Scholar
[3]
E. Fridman: New Lyapunov-Karsovskii functionals for stability of linear retarded and neutral type systems, Syst. Control Lett., vol.43, pp.309-319, 2001.
DOI: 10.1016/s0167-6911(01)00114-1
Google Scholar
[4]
M. S. Mahmoud: Robust control of linear neutral systems, Automatica, vol.36, pp.757-764, 2000.
DOI: 10.1016/s0005-1098(99)00159-4
Google Scholar
[5]
Y. Niu, D.W.C. Ho, and X. Wang: Robust control for nonlinear stochastic systems: A sliding-mode approach , IEEE Trans. Automat. Contr., vol.53, pp.1695-1701, 2008.
DOI: 10.1109/tac.2008.929376
Google Scholar
[6]
G. Bartolini and A. Ferrara, in: A simplified discontinuous control scheme for uncertain linear systems: an Input/Output approach. In; Proc.of the IEEE workshop in Variable Structere and Lyapunov Control of Uncertain Dynamical Systems, Sheffild, UK, pp.6-11. (1992)
Google Scholar
[7]
X. Xu, P. Shi, Y. Chu, and Y. Zou, in: Robust stochastic stabilization and control of uncertain neutral stochastic time-delay systems, J.Math.Anal.Appl., vol.314, pp.1-16,2006.
DOI: 10.1016/j.jmaa.2005.03.088
Google Scholar
[8]
Q. L. Han: Robust stability of uncertain delay-differential systems of neutral type, Automatica, vol.38, pp.719-723, 2002.
DOI: 10.1016/s0005-1098(01)00250-3
Google Scholar
[9]
C. Yuan and X. Mao, in: Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica, vol. 40, p.343–354, 2004.
DOI: 10.1016/j.automatica.2003.10.012
Google Scholar
[10]
Z. Wang, J. Lam, and X. Liu: Nonlinear filtering for state delayed systems with Markovian switching, IEEE Trans. Signal Process., vol. 51, no. 9, p.2321–2328, Sep. 2003.
DOI: 10.1109/tsp.2003.815373
Google Scholar
[11]
M. S. Mahmoud and L. Xie, in: Stability and positive realness of time delay systems, J. Math. Anal. Appl., vol.239, pp.7-19, 1999.
Google Scholar
[12]
Y. Xia and Y. Jia: Robust stability analysis for time-delay systems with polytopic uncertainties via parameter-dependent Lyapunov functionals, Int. J. Control, vol. 75, no. 6–7, p.1427–1434, 2002.
DOI: 10.1080/0020717021000023834
Google Scholar
[13]
Y. Xia and Y. Jia, in: Robust control of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functionals, Syst. Control Lett., vol. 50, no. 3, p.183–193, 2003.
DOI: 10.1016/s0167-6911(03)00153-1
Google Scholar
[14]
Y. Xia and Y. Jia: Robust sliding mode control of uncertain time-delay systems : An LMI approach, IEEE Trans. Autom. Control, vol. 48, no. 6, p.1986–1092, Jun. 2003.
DOI: 10.1109/tac.2003.812815
Google Scholar
[15]
E. Fridman and U. Shaked, in: A descriptor system approach to control of linear time-delay systems, IEEE Trans. Automat. Contr., vol.47, pp.253-270, 2002.
DOI: 10.1109/9.983353
Google Scholar
[16]
Y. Kuang, in: Delay Differential Equations with Applications in Population Dynamics, Boston, MA:Academic, 1993.
Google Scholar
[17]
M. Wu, Y. He, and J. H. She: New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE Trans. Automat. Contr., vol.49, pp.2266-2271, 2004.
DOI: 10.1109/tac.2004.838484
Google Scholar
[18]
L. Huang, X. Mao: SMC design for robust control of uncertain stochastic delay systems, Automatica, vol.46, pp.405-412, 2010.
DOI: 10.1016/j.automatica.2009.11.013
Google Scholar
[19]
K. Boukas, in: Stabilization of stochastic nonlinear hybrid systems, Int. J. Innovative Comput., Inform. Control, vol. 1, no. 1, p.131–141, 2005.
Google Scholar
[20]
S. Xu, J. Lam, and C. Yang, in: and positive-real control for linear neutral delay systems, IEEE Trans. Automat. Contr., vol.46, pp.1321-1326, 2001.
DOI: 10.1109/9.940943
Google Scholar
[21]
E. Fridman and U. Shaked: Dealy-dependent stability and control: constant and time varying delays, Int. J. Control, vol.76, pp.48-60, 2003.
DOI: 10.1080/0020717021000049151
Google Scholar