A Genetic Algorithm for the Production Policy in a Supply Chain under Discrete Demand and Time-Vary Cost

Article Preview

Abstract:

Considering discrete demand and time-vary unit production cost under a foreseeable time horizon, this study presents an adaptive genetic algorithm to determine the production policy for one manufacturer supplying single item to multiple warehouses in a supply chain environment. Based on Distribution Requirement Planning (DRP) and Just in Time (JIT) delivery policy, we assume each gene in chromosome represents a period. Standard GA operators are used to generate new populations. These populations are evaluated by a fitness function using the total cost of production scheme. An explicit procedure for obtaining the local optimal solution is provided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2137-2140

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http://www.vics.org/committees/cpfr/

Google Scholar

[2] M. Khouja and S. Park: Omega, Vol. 31(6) (2003), pp.539-545.

Google Scholar

[3] M. Khouja and S. Goyal: Int J. Prod. Eco., Vol. 102(1) (2006), pp.87-94.

Google Scholar

[4] B. C. Ouyang and H. Rau: Asia Pac. J. of Oper. Res., Vol. 25(5) (2008), pp.673-688.

Google Scholar

[5] J. T. Teng, and H. L. Yang,: J. of the Oper. Res. Soc., Vol. 55(5) (2004), pp.495-503.

Google Scholar

[6] J. T. Teng, M. S. Chern and Y. L. Chan: Int. Trans. in Oper. Res., Vol. 12(1) (2005a), pp.83-100.

Google Scholar

[7] J.T. Teng, Y.L. Ouyang and C.T. Chang: Appl. Math. Mod., Vol. 29 (2005b), 987-1003.

Google Scholar

[8] H. M. Wagner,and T. M., Whitin: Manag. Sci., Vol. 5(1) (1958), pp.89-96.

Google Scholar

[9] W. Lee,: Omega, Vol. 33(2) (2005), pp.163-174.

Google Scholar

[10] M. Khouja, Z. Mickalewicz and M. Wilmot: Eru. J. Opl. Res., Vol. 110(2) (1998), pp.509-524.

Google Scholar

[11] N. V. Hop and M. T. Tabucanon: Int J. Prod. Eco., Vol. 98(1) (2005), pp.129-135.

Google Scholar