Embedded Differential Evolution Algorithm for Recurrent Fuzzy Neural Network Controller Optimization

Article Preview

Abstract:

A chaos concise differential evolution algorithm (CcDE) is proposed for the embedded controller with limited memory, which introduces chaotic local search based on basic differential evolution algorithm to increase exploring and prevent premature convergence. Using virtual population and Gaussian sampling, the CcDE becomes simple and reduces the memory requirements at run time. Experimental simulation on optimizing parameters of the recurrent fuzzy neural network shows that the proposed CcDE can obtain better performance than other concise algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2141-2145

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.F. Hsu and K.H. Cheng: Neurocomputing, Vol. 71(16-18) (2008), pp.3447-3459

Google Scholar

[2] J. Ilonen, J.K. Kamarainen, J. Lampinen: Neural Processing Letters, Vol.17(1)(2003),pp.93-105

DOI: 10.1023/a:1022995128597

Google Scholar

[3] Y. Zhang, D.W. Gong, Y.Q. Ren, J.H. Zhang: ACTA ELECTRONICA SINICA. (in Chinese)Vol.39(6)(2011), pp.1436-1440

Google Scholar

[4] E. Mininno, F. Cupertino, D. Naso: IEEE Trans on Evolutionary Computation. Vol.12(2)(2008), pp.203-219

Google Scholar

[5] F. Neri, E. Mininno: IEEE Computational Intelligence Magazine. Vol.5(2)(2010), pp.54-65

Google Scholar

[6] R. Caponetto, L. Fortuna, S. Fazzino, M.G. Xibilia: IEEE Transactions on Evolutionary Computation. Vol.7(3)(2003), pp.289-304

DOI: 10.1109/tevc.2003.810069

Google Scholar