[1]
D'AMBROS M, LANZA M, ROBBES R. Evaluating defect prediction approaches: a benchmark and an extensive comparison [J]. Empirical Software Engineering, 2012, 17(4): 531-577.
DOI: 10.1007/s10664-011-9173-9
Google Scholar
[2]
D'AMBROS M, LANZA M, ROBBES R. An extensive comparison of bug prediction approaches [C]// Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE, 2010: 31-41.
DOI: 10.1109/msr.2010.5463279
Google Scholar
[3]
GRAVES T L, KARR A F, MARRON J S, et al. Predicting fault incidence using software change history [J]. Software Engineering, IEEE Transactions on, 2000, 26(7): 653-661.
DOI: 10.1109/32.859533
Google Scholar
[4]
NAGAPPAN N, BALL T. Static analysis tools as early indicators of pre-release defect density [C]// Proceedings of the 27th international conference on Software engineering. ACM, 2005: 580-586.
DOI: 10.1109/icse.2005.1553604
Google Scholar
[5]
NAGAPPAN N, BALL T, ZELLER A. Mining metrics to predict component failures [C]// Proceedings of the 28th international conference on Software engineering. ACM, 2006: 452-461.
DOI: 10.1145/1134285.1134349
Google Scholar
[6]
HASSAN A E. Predicting faults using the complexity of code changes [C]// Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society, 2009: 78-88.
DOI: 10.1109/icse.2009.5070510
Google Scholar
[7]
MOSER R, PEDRYCZ W, SUCCI G. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction [C]// Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference on. IEEE, 2008: 181-190.
DOI: 10.1145/1368088.1368114
Google Scholar
[8]
MAJUMDER S K, GHOSH N, GUPTA P K. Relevance vector machine for optical diagnosis of cancer [J]. Lasers in surgery and medicine, 2005, 36(4): 323-333.
DOI: 10.1002/lsm.20160
Google Scholar
[9]
TIPPING M E. Sparse Bayesian learning and the relevance vector machine [J]. The Journal of Machine Learning Research, 2001, 1(1): 211-244.
Google Scholar
[10]
BISHOP C M. Pattern recognition and machine learning [M]springer New York, 2006.
Google Scholar
[11]
TIPPING M E, FAUL A C. Fast marginal likelihood maximisation for sparse Bayesian models [C]// Proceedings of the ninth international workshop on artificial intelligence and statistics. Jan, 2003.
Google Scholar