RFID-Based Thermal Convection Floating Type Accelerometer with Different Packaging Chambers and Filled Gases

Article Preview

Abstract:

This research proposes a wireless RFID-based thermal convection accelerometer, and relates for the technology to manufacture and package it on a flexible substrate. The key technology is to integrate both a thermal convection accelerometer and a wireless RFID antenna on the same substrate, such that the accelerometer is very convenient for fabrication and usage. In this paper the heaters as well as the thermal sensors are made on the surface of the flexible substrate with the traditional floating structure. In addition, the inner shape of the chamber can be as hemi-cylindrical and hemi-spherical ones instead of the conventional rectangular type. Comparisons are also made, the sensitivity of the new proposed semi-spherical design with Xe gas is better at lower accelerations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

573-577

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hua, L. Jiang, Y. Cai, A. Leung and Y. Zhao, U.S. Patent:US 0,101,813 A1. (2007)

Google Scholar

[2] T.R. Hsu, in: MEMS & Microsystems Design and Manufacture, INSPEC, The Institution of Electrical Engineer, London, U. K. (2004)

Google Scholar

[3] L.M. Roylance and J.B. Angell: IEEE Transactions on Electron Devices, Vol.ED-26 (1979), p.(1911)

Google Scholar

[4] P.M. Zavracky, F. Hartley, N. Sherman, T. Hansen and K. Warner: 7th lnt. Conf. Solid-State Sensors and Actuators (Transducers'93) (1993), Yokohama, Japan, p.50

Google Scholar

[5] H.K. Rockstad, J.K. Reynolds, T.K. Tang, T.W. Kenny, W.J. Kaiser and T.B. Gabrieison: Solid-State Sensors and Actuators A (1996), Vol. 53, p.277

Google Scholar

[6] L. Lin, R.T. Howe and A.P. Pisano: J. Micro-Electromechanical System, Vol. 7 (1998), p.294

Google Scholar

[7] Y. Zhao, A. P. Brokaw, M. E. Rebeschini, A. M. Leung, G. P. Pucci and A. Dribinsky: US Patent NO:US 6,795,752 B1. (2004)

Google Scholar

[8] K. M. Liao, R. Chen and B. C. S. Chou: Sensors and Actuators A: Physical, Vol. 130-131(2006), p.282.

Google Scholar

[9] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma and M. Esashi : J. Micromech. Microeng. Vol. 6 (1996), p.431.

DOI: 10.1088/0960-1317/6/4/010

Google Scholar

[10] L. C. Spangler and C. J. Kemp : Sens. Actuators, Vol. 54 (1996), p.523.

Google Scholar

[11] U. A. Dauderstadt, P. M. Sarro and S. Middelhoek: Sens. Actuators A, Vol. 66 (1998), p.244.

Google Scholar

[12] R. Dao, D. E. Morgan, H. H. Kries and D. M. Bachelder : United States Patent US 5,581,034. (1996)

Google Scholar

[13] V. Milanovic, E. Bowen, N. Tea, J. S. Suehle, B. Payne, M. E. Zaghloul and M. Gaitan : MEMS Symp. Int. Mech. Eng. Exposition (1998), p.627.

Google Scholar

[12] X. B. Luo, Z. X Li, Z. Y. Guo, Y. J. Yang: Journal of Micromechanics and Microengineering. Vol. 11 (2001), p.504.

Google Scholar

[13] L. Lin, A. P. Pisano and V. P. Carey: Microsystem Technologies, Vol. 1 (1994), p.51.

Google Scholar

[14] J. H. Tsai, L. Lin: Sensors and Actuators A: Physical, Vol. 97 (2002), p.1

Google Scholar