Forced Consensus of Multi-Agent Systems with Directed Communication Topology and Interval Time-Varying Delay

Article Preview

Abstract:

This paper is concernedwith forced consensus problem for directed multi-agent systems with intervaltime-varying delay, whereall agents approach a constant reference trajectory under the condition thatonly a subset of the agents can receive information from the reference state. Thetime-varying delay is assumed to belong to an interval with known lower andupper bounds, but its lower bound may be greater than zero. We first propose a consensusalgorithm that extends the existing results in the literature to account forinterval time-varying delay. Then, the consensus stability analysis isconducted by introducing an appropriate Lyapunov-Krasovskii functional and using Jensen inequalitytechnique. A delay-range-dependentstability criterion is derived in terms of linear matrixinequalities, which can be efficiently solved by the interior-point algorithm.Finally, simulation examples indicatethe capabilities of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

852-857

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks (Springer-Verlag, London, 2011)

Google Scholar

[2] R. Olfati-Saber, J. A. Fax and R. M. Murray, Proc. IEEE 95 (2007) 215

Google Scholar

[3] W. Ren, R. W. Beard and E. M. Atkins, IEEE Control Syst. Mag. 27 (2007) 71

Google Scholar

[4] R. Olfati-Saber and R. M. Murray, IEEE Trans. Autom. Control 49 (2004) 1520

Google Scholar

[6] G. Xie and L. Wang, Int. J. Robust Nonlinear Control 17 (2007) 941

Google Scholar

[7] W. Ren, IEEE Trans. Autom. Control 53 (2008) 1503

Google Scholar

[8] Y. Zhang and Y.-P. Tian, Automatica 45 (2009) 1195

Google Scholar

[9] Y. Chen, J. Lv, F. Han and X. Yu, Syst. Control Lett. 60 (2011) 517

Google Scholar

[10] Z. Wang and J. Cao, IET Control Theory Appl. 6 (2012) 545

Google Scholar

[11] D. Xie and S. Wang, J. Math. Anal. Appl. 387 (2012) 8

Google Scholar

[12] J. H. Wang, D. Z. Cheng and X. M. Hu, Asian J. Control 10 (2008) 144

Google Scholar

[13] Y.-P. Tian and Y. Zhang, Automatica 48 (2012) 1205

Google Scholar

[14] J. Hu and Y. Hong, Physica A 374 (2007) 853

Google Scholar

[15] P. Lin and Y. Jia, Physica A 387 (2008) 303

Google Scholar

[16] Y.-P. Tian and C.-L. Liu, IEEE Trans. Autom. Control 53 (2008) 2122

Google Scholar

[17] C.-L. Liu and F. Liu, Automatica 47 (2011) 2130

Google Scholar

[18] A. Abdessameud, A. Tayebi and I. G. Polushin, IEEE Trans. Autom. Control 57 (2012) 2405

Google Scholar

[19] Y. Sun and L. Wang, Syst. Control Lett. 61 (2012) 857

Google Scholar

[20] W. Ren, Syst. Control Lett. 56 (2007) 474

Google Scholar

[21] B. Yang and H. Fang, Automatica 46 (2010) 629

Google Scholar

[22] Y. Hong, L. Gao, D. Cheng and J. Hu, IEEE Trans. Autom. Control 52 (2007) 943

Google Scholar

[23] W. Ren, IET Control Theory Appl. 1 (2007) 505

Google Scholar

[24] J. Qin, W. X. Zheng and H. Gao, Automatica 47 (2011) (1983)

Google Scholar

[25] D. Meng, Y. Jia, J. Du and F. Yu, Syst. Control Lett. 61 (2012) 807

Google Scholar

[26] Q.-L. Han and K. Gu, Asian J. Control 3 (2001) 170

Google Scholar

[27] K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)

Google Scholar

[28] S. Boyd, L. EI Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, PA, 1994)

DOI: 10.1137/1.9781611970777

Google Scholar