[1]
J. K. Tein, T. Caulfield, Superalloys, supercomposites, and superceramics, Boston Academic Press, 1989, 775 p.
Google Scholar
[2]
M. C. Kushan, Hot cracking suspectibilities in the heat-affected zone of electron beam-welded Inconel 718, Journal of Material Science Letters 17, 1998, 1231-1234.
Google Scholar
[3]
T. Unalır, The properties of MoSi2 based composites, the research of high structural application of MoSi2–Si3N4, Master of Science Thesis, Osmangazi University, 2006, 8-11 p.
Google Scholar
[4]
A.K. Vaseduvan, J.J. Petrovic; 1992; A comparative overview of molybdenum disilicide composites, Materials Science and Engineering, A155, 1-17.
Google Scholar
[5]
Z. Yao, J.J. Stiglich, T.S. Sudarshan; 1998; Molybdenum disilicide materials and their properties, Material Modification Inc.
Google Scholar
[6]
F.O. Soetching; 1995; A design perspective on thermal barrier coatings, Thermal Barrier Workshop – Proceedings of a Conference at NASA Lewis Research Center.
Google Scholar
[7]
E. F. Bradley, 1988, Superalloys a technical guide, Metals Park, Ohio, 280 p.
Google Scholar
[8]
ASM, 1987, Metals Handbook, Ninth Edition, Volume 13, Corrosion, Metals Park, Ohio, 1415 p.
Google Scholar
[9]
I. Akkus, 1999, The aluminide coating of superalloys with pack cementation method, Master of Science Thesis, Osmangazi University, 27 p.
Google Scholar
[10]
J.J. Petrovic; 1993; MoSi2-based high temperature structural silicides, MRS Bulletin, XVIII, 35-40
Google Scholar
[11]
J.J. Petrovic, A.K. Vasudevan; 1994; overview of high temperature structural silicides, Material Research Society Symposum Proceedings, 322, 3-8
Google Scholar
[12]
J.J. Petrovic; 1997; High temperature structural silicides, Ceramic Engineering and Science Proceedings, 18, 3-17
Google Scholar
[13]
T. Mithcel, M. Baskes, R. Hoagland and A. Misra, Dislocation core structures and yield stress anomalies in MoSi2, Intermetallics 9, 849-856 p.
DOI: 10.1016/s0966-9795(01)00081-4
Google Scholar
[14]
Y. Uzunonat, 2005, A research about MoSi2 as engineering material, Master of Science Thesis, Osmangazi University, 16 p.
Google Scholar
[15]
P.J. Meschter; 1992; Low temperature oxidation of molybdenum disilicide, Metallurg. Trans. A, 23A, 1763-1772.
DOI: 10.1007/bf02804369
Google Scholar
[16]
A. E. Newman, Microstructure and properties of molybdenum disilicide and its composites, Ph.D. Thesis, State University of New York, 140p.
Google Scholar
[17]
T.C. Chou, T.G. Nieh; 1992; new observation of MoSi2 pest at 500°C, Script. Metallurg. Mater., 26, 1637-1642.
DOI: 10.1016/0956-716x(92)90270-o
Google Scholar
[18]
T.C. Chou, T.G. Nieh; December 1993; Pesting of the high temperature intermetallic MoSi2, Journal of Materials, 15-22.
DOI: 10.1007/bf03222509
Google Scholar
[19]
G. Wang, W. Jiang, G. Bai and L. Wu, 2003, Effect of addition of oxides on low-temperature oxidation of molybdenum disilicide, Journal of American Ceramic Society, 86 [4], 731-734p.
DOI: 10.1111/j.1151-2916.2003.tb03365.x
Google Scholar
[20]
Q. Liu, G. Shao and P. Tsakiropoulos, 2001, On the oxidation behaviour of MoSi2, Intermetallics, 8, 1147-1158p.
Google Scholar
[21]
K. Hansson, J. E. Tang, M. Halvarsson, R. Pompe, M. Sundberg and H. E. Svensson, The beneficial effect of water vapour on the oxidation at 600°C and 700°C of MoSi2-based composite, 2005, Journal of the European Ceramic Society, 25, 1-11p.
DOI: 10.1016/j.jeurceramsoc.2004.01.005
Google Scholar
[22]
J.J. Petrovic, Toughening strategies for MoSi2-based structural silicides, 2000, Intermetallics, 8, 1175-1182p.
DOI: 10.1016/s0966-9795(00)00044-3
Google Scholar
[23]
J.J. Petrovic, A.K. Vasudevan, Key developments in high temperature structural silicides, 1999, Materials Science and Engineering, A261, 1-5p.
Google Scholar