[1]
P.M. Ajayan., Nanotubes from Carbon, Chem. Rev. 99 (1999)1787-1799.
Google Scholar
[2]
P. J. Harris, Carbon nanotubes and related structures: New Materials for the 21st century, Cambridge: University Press, (1999).
Google Scholar
[3]
J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40 (1999) 5967-5971.
DOI: 10.1016/s0032-3861(99)00166-4
Google Scholar
[4]
S.J. Trans, A.R.M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube Nature, 393 (1998) 49-52.
DOI: 10.1038/29954
Google Scholar
[5]
M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Electrochemical Capacitance of Nano composite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole, Advanced Materials, 14 (2002) 382-385.
DOI: 10.1002/1521-4095(20020304)14:5<382::aid-adma382>3.0.co;2-y
Google Scholar
[6]
S.Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[7]
C.Journet, P.Bernier, Appl. Phys., A67, (1998) 1-9.
Google Scholar
[8]
J.Berhnole, C.Brabec, M.Buongiorno Nardelli, A.Haiti, C.Roland, B.I. Yakobson, Theory of growth and mechanical properties of nanotubes, Appl. Phys., A67 (1998) 39-46
DOI: 10.1007/s003390050735
Google Scholar
[9]
A.T. Dimitrov, G.Z. Chen, I.A. Kinloch, D.J. Fray, A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts, Electrochimica Acta, 48 (2002) 91-102.
DOI: 10.1016/s0013-4686(02)00595-9
Google Scholar
[10]
M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bewendi, E.B.V. Hanlon, A.M. Rao, Raman modes of metallic carbon nanotubes, Phys. Rev., B 58, (1998) R16016-R16019.
DOI: 10.1103/physrevb.58.r16016
Google Scholar
[11]
C. Schwandt, A.T. Dimitrov, D.J. Fray, The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes, J. Electroanalyt. Chem. 647 (2010) 150-158.
DOI: 10.1016/j.jelechem.2010.06.008
Google Scholar
[12]
Carsten Schwandt, Aleksandar T. Dimitrov, Derek J. Fray, High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis, CARBON, 50 (2012) 1311–1315.
DOI: 10.1016/j.carbon.2011.10.054
Google Scholar
[13]
A.R. Kamali, D.J. Fray, C. Schwandt, Thermokinetic characteristics of lithium chloride, J. Therm. Anal. Calorim. 104 (2011) 619-626.
DOI: 10.1007/s10973-010-1045-9
Google Scholar
[14]
A. T. Dimitrov, A. Tomova, A. Grozdanov, O. Popovski, P. Paunović, Electrochemical production, characterization, and application of MWCNTs, J. Solid State Electrochemistry, 17 (2013) 399-407.
DOI: 10.1007/s10008-012-1896-z
Google Scholar
[15]
J. D. Saxby, S. P. Chatfield, A. J. Palmisano , A. M Vassallo, M. A. Wilson, L. S. K. Pang , Thermogravimetric analysis of buckminsterfullerene and related materials in air, J. Phys. Chem, 96 (1992) 17-18.
DOI: 10.1021/j100180a007
Google Scholar
[16]
H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, Raman studies of carbon nanotubes, Chem. Phys. Lett, 202 (1993) 509-512.
DOI: 10.1016/0009-2614(93)90040-8
Google Scholar
[17]
W. Li, H. Zhang, C. Wang, L. Xu, K. Zhu, S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 70 (1997) 2684-2686.
DOI: 10.1063/1.118993
Google Scholar
[18]
F. Tunistra, J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53 (1970) 1126-1130.
Google Scholar
[19]
M. Endo, K. Nishimura, Y. A. Kim, K. Hakamada, T. Matushita, M. S. Dresselhaus, G. Dresselhaus, Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons, J. Mater. Res., 14 (1999) 4474-4477.
DOI: 10.1557/jmr.1999.0607
Google Scholar