Production and Characterization of MWCNTs Produced by Non-Stationary Current Regimes in Molten LiCl

Article Preview

Abstract:

This article presents production and characterizations of MWCNTs produced by non-stationary current regimes into lithium molten chloride. In order to improve the process of MWCNTs production, instead of applying a constant cathode potential, the method of reversing the potential was applied. It should be mentioned that during the process of electrolysis reduced lithium intercalate at graphite surface and generates a high mechanical stress that causes exfoliation of the graphite cathode. This phenomenon enables electrochemical synthesis of MWCNTs to be possible. The measurements were performed in temperature interval from 700 to 800°C. Several techniques were employed for characterization, i.e. electron microscopy (SEM and TEM), Raman spectroscopy, thermo gravimetric and differential thermal analysis (TGA and DTA). SEM and TEM images show that nanotubes are mostly of curved shape with length of 1÷20 μm and diameter of 20÷40 nm. Raman peaks indicate that the crystal lenity of produced nanotubes is rather low. The obtained results suggest that formed product contains of up to 80% MWCNTs, the rest being non-reacted graphite and fullerenes. DTA curves show that combustion process of the nanotubes takes place in two stages, i.e. at 450°C and 720°C. At the lower temperature combustion of MWCNTs occurs, while at higher one fullerenes and non-reacted graphite particles burn.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

772-777

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M. Ajayan., Nanotubes from Carbon, Chem. Rev. 99 (1999)1787-1799.

Google Scholar

[2] P. J. Harris, Carbon nanotubes and related structures: New Materials for the 21st century, Cambridge: University Press, (1999).

Google Scholar

[3] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40 (1999) 5967-5971.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[4] S.J. Trans, A.R.M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube Nature, 393 (1998) 49-52.

DOI: 10.1038/29954

Google Scholar

[5] M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Electrochemical Capacitance of Nano composite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole, Advanced Materials, 14 (2002) 382-385.

DOI: 10.1002/1521-4095(20020304)14:5<382::aid-adma382>3.0.co;2-y

Google Scholar

[6] S.Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[7] C.Journet, P.Bernier, Appl. Phys., A67, (1998) 1-9.

Google Scholar

[8] J.Berhnole, C.Brabec, M.Buongiorno Nardelli, A.Haiti, C.Roland, B.I. Yakobson, Theory of growth and mechanical properties of nanotubes, Appl. Phys., A67 (1998) 39-46

DOI: 10.1007/s003390050735

Google Scholar

[9] A.T. Dimitrov, G.Z. Chen, I.A. Kinloch, D.J. Fray, A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts, Electrochimica Acta, 48 (2002) 91-102.

DOI: 10.1016/s0013-4686(02)00595-9

Google Scholar

[10] M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bewendi, E.B.V. Hanlon, A.M. Rao, Raman modes of metallic carbon nanotubes, Phys. Rev., B 58, (1998) R16016-R16019.

DOI: 10.1103/physrevb.58.r16016

Google Scholar

[11] C. Schwandt, A.T. Dimitrov, D.J. Fray, The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes, J. Electroanalyt. Chem. 647 (2010) 150-158.

DOI: 10.1016/j.jelechem.2010.06.008

Google Scholar

[12] Carsten Schwandt, Aleksandar T. Dimitrov, Derek J. Fray, High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis, CARBON, 50 (2012) 1311–1315.

DOI: 10.1016/j.carbon.2011.10.054

Google Scholar

[13] A.R. Kamali, D.J. Fray, C. Schwandt, Thermokinetic characteristics of lithium chloride, J. Therm. Anal. Calorim. 104 (2011) 619-626.

DOI: 10.1007/s10973-010-1045-9

Google Scholar

[14] A. T. Dimitrov, A. Tomova, A. Grozdanov, O. Popovski, P. Paunović, Electrochemical production, characterization, and application of MWCNTs, J. Solid State Electrochemistry, 17 (2013) 399-407.

DOI: 10.1007/s10008-012-1896-z

Google Scholar

[15] J. D. Saxby, S. P. Chatfield, A. J. Palmisano , A. M Vassallo, M. A. Wilson, L. S. K. Pang , Thermogravimetric analysis of buckminsterfullerene and related materials in air, J. Phys. Chem, 96 (1992) 17-18.

DOI: 10.1021/j100180a007

Google Scholar

[16] H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, Raman studies of carbon nanotubes, Chem. Phys. Lett, 202 (1993) 509-512.

DOI: 10.1016/0009-2614(93)90040-8

Google Scholar

[17] W. Li, H. Zhang, C. Wang, L. Xu, K. Zhu, S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 70 (1997) 2684-2686.

DOI: 10.1063/1.118993

Google Scholar

[18] F. Tunistra, J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53 (1970) 1126-1130.

Google Scholar

[19] M. Endo, K. Nishimura, Y. A. Kim, K. Hakamada, T. Matushita, M. S. Dresselhaus, G. Dresselhaus, Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons, J. Mater. Res., 14 (1999) 4474-4477.

DOI: 10.1557/jmr.1999.0607

Google Scholar