[1]
I. Seyssiecq, S. Veesler, R. Boistelle, J.M. Lamérantt, Agglomeration of gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters, Chemical Engineering Science 53 (1998) 2177-2185.
DOI: 10.1016/s0009-2509(98)00032-3
Google Scholar
[2]
B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, C.R. Mishra, B.K. Mishra, Precipitation of boehmite in sodium aluminate liquor, Hydrometallurgy 95 (2009) 297-301.
DOI: 10.1016/j.hydromet.2008.07.002
Google Scholar
[3]
B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, C.R. Mishra, B.K. Mishra, Effect of temperature and alumina/caustic ratio on precipitation of boehmite in synthetic sodium aluminate liquor, Hydrometallurgy 88 (2007) 121-126.
DOI: 10.1016/j.hydromet.2007.02.011
Google Scholar
[4]
Y. Zhang, S.L. Zheng, H. Du, H.B. Xu, S.N. Wang, Y. Zhang, Improved precipitation of gibbsite from sodium aluminate solution by adding methanol, Hydrometallurgy 98 (2009) 38-44.
DOI: 10.1016/j.hydromet.2009.03.014
Google Scholar
[5]
Q.P. Chen, H.J. Yan, S.H. Ge, J.M. Zhou, Experimental verification of mathematical model for multiphase flow in air-agitated seed precipitation tank, Trans. Nonferrous Met. Soc. China 21 (2011) 1680-1684.
DOI: 10.1016/s1003-6326(11)60914-x
Google Scholar
[6]
J.Q. Chen, P.M. Zhang, G.Y. Gan, Z.L. Yin, Q.Y. Chen, Kinetics of crystal growth on seeded precipitation of sodium aluminate solutions with new device, Trans. Nonferrous Met. Soc. China 14 (2004) 824-828.
Google Scholar
[7]
T.S. Li, I. Livk, D. Ilievski, Supersaturation and temperature dependency of gibbsite growth in laminar and turbulent flows, Journal of Crystal Growth 258 (2003) 409-419.
DOI: 10.1016/s0022-0248(03)01557-4
Google Scholar
[8]
E.S. Szalai, P. Arratia, K. Johnson, F.J. Muzzio, Mixing analysis in a tank stirred with Ekato Intermig® impellers, Chemical Engineering Science 59 (2004) 3793-3805.
DOI: 10.1016/j.ces.2003.12.033
Google Scholar
[9]
M. Schäfer, B. Karasözen, Y. Uludağ, K. Yapıcı, Ö. Uğur, Numerical method for optimizing stirrer configurations, Computers and Chemical Engineering 30 (2005) 183-190.
DOI: 10.1016/j.compchemeng.2005.08.016
Google Scholar
[10]
L.C. Wang, Y.F. Zhang, X.G. Li, Y. Zhang, Experimental investigation and CFD simulation of liquid–solid–solid dispersion in a stirred reactor, Chemical Engineering Science (2010) 5559-5572.
DOI: 10.1016/j.ces.2010.08.002
Google Scholar
[11]
O.P. Klenov, A.S. Noskov, Solid dispersion in the slurry reactor with multiple impellers, Chemical Engineering Journal 176– 177 (2011) 75-82.
DOI: 10.1016/j.cej.2011.07.056
Google Scholar
[12]
B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas–liquid–solid stirred reactor: Prediction of critical impeller speed for solid suspension, Chemical Engineering Science 62 ( 2007) 7184-7195.
DOI: 10.1016/j.ces.2007.07.005
Google Scholar
[13]
V.V. Ranade, Numerical simulation of dispersed gas–liquid flows, Sādhanā 17 (1992) 237-273.
DOI: 10.1007/bf02812053
Google Scholar
[14]
M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chemical Engineering Research and Design 79 (2001) 533–546.
DOI: 10.1205/02638760152424307
Google Scholar
[15]
D.J. Vojir, E.E. Michaelides, Effect of the history term on the motion of rigid spheres in a viscous fluid, Journal of Multiphase Flow 20 (1994) 547-556.
DOI: 10.1016/0301-9322(94)90028-0
Google Scholar